논리 평가좀
전제가 참이면 결론이 참
대우명제는
결론이 거짓이면 전제가 거짓
전제안에 공리가 들어감
따라서 결론이 거짓이면 전제가 거짓이고 공리가 거짓임
공리를 부정하면 무모순
이말은 공리가 거짓이면 무모순
따라서
결론이 거짓이면 전제가 거짓이고 공리가 거짓이고
공리가 거짓이면 무모순
요약하면
결론을 부정하면 무모순
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어려서 꿈꾸었던 비행기 타고~
-
잘 사실까..
-
경희대 반도체공 전자공 6칸인데 경희대 경제 무역 경영도 6칸임 근데 경희대 무역...
-
의대합격보다 진지하게 어려운듯 국가유공자혈통도있어야되잖아
-
진짜 시작하면 중독돼서 하루에 8시간씩 박을거같은데
-
초성게임(끝) 33
ㅁㅎ 12시 10분까지 기회 무제한 상품:5천덕 힌트: 먹을 수 있는 거임 5천덕...
-
김동욱 8
자러갈게요
-
김태완스시 10
아유 배고파
-
약 먹는 동안은 이 시간에 밥을 먹으면 안되겠어요...
-
예측확률 99%일때 min 값이 가장 보수적으로 본건가요?
-
지구10모까지 평백 98 -> 수능백분위 54… 지구 유지 or 생윤(또는...
-
체지방을 줄이는걸 동시에 하는건 불가능한가
-
호떡 먹고 싶어요 14
여행가서 먹은 그 맛이 잊혀지지 않네요 주변에 호떡 파는 곳이 없어서 울엇어...
-
메시와 호날두라 할 수 있다.
-
다군에 동국대 열린전공(인문)은 추합 얼마나 돌까요...??.? 70명 뽑고...
-
이거 태블릿 지급이라고 돼 있는데 사양 괜찮은가요? 2주전에 13인치 스마트탭 샀는데 반입 안되죠?
-
동일 학교 높공 버리고 상경 썼는데 벌써부터 미친듯이 후회중임 살자마려운데 +1이 답임?
-
어저께 그 도시락 또 있었음 ㅋㅋㅋㅋ 그거 먹을까 오만번 고민하다 결국 햇반만 사왔네요
-
왜긴왜야 모고 볼때마다 화1 인원자수 갈려나가던데 ㅋㅋㅋ 분명첨에 3모칠때...
-
하나 못풀었을때 멘탈이 갈릴듯 96이 목표면 두개 못풀었을때 멘탈이 갈릴듯 92가...
-
본인 여사친 존예에 씹인싸에 공부잘하는 명문자사고생인디 신남연 팬임 ㅇㅇ 신은 공평함
-
걍 가슴쪽이 좀만 아파도 어제 그 병원에서 과잉진료한거같고 그럼 내 피같은...
-
제 레어 언제 와요....
-
초성게임 시작(끝) 38
답 맞추면 5000덕 ㅅㅇ 12시 3분까지 받음뇨 기회 무제한 힌트:고유명사...
-
공부인증1일차 4
3모 23311가 목표입니다 앞으로 더 열심히 노력할게요 현역 문과정시파이터의...
-
올해안에 되긴할려나
-
그때부터 오르비 비호감됐는데 진짜 이상한사람들 많네
-
2025년 1월 1주차 韓日美全 음악 차트 TOP10 (+2024년 12월 4주차 주간VOCAL Character 랭킹) 2
2024년 12월 4주차 차트: https://orbi.kr/00071194122...
-
수강하신분 계신가여? 하셨다면 후기가 궁금하네요..
-
1번틀 98점 되고싶었음 물론실력은안됨
-
10명중 5명이나 점공을 했어요지금 1등이라 4명만 더 알면 되는데...
-
별론가
-
초성게임 시작 3
ㅅㅅ
-
재밌어요... 현역(진)인데 말이죠
-
이거 맞지..? 포모 오네
-
ㅇㅈ 15
실시간 저녁 ㅇㅈ.
-
저랑 만나실 수 있는 데이트권을 드립니다 넵.
-
강기원T 수학 7
강기원T 수학 라이브 듣고 있는데 강의는 따라갈만한데 어싸가 너무 어려워요.. 고3...
-
물리 2 지구 1
물리2랑 지구1 중에 뭐가 더 2등급 하기 쉽나요? 둘다 처음합니다 다만 물2는...
-
07들이제들어오는데 예아피방재밌노 Wwwwww 이럴순없잖아요…
-
2만덕 드림 나군 밖에 안 될 거 같아서 나군 기준으로 합니다 최초합 ~ 예비...
-
수학 실수는 대체 어떻게 하면 고칠 수 있음뇨?? 15
25 9모 3점 틀(24번인가 25번) + 22 29 사칙연산 틀 25 수능 5번...
-
물론 너무 낮은대학이 아닌이상은 ㄹㅇ 과가 더중요한거같은데
-
화학:기체추론,양자수추론,이온화 에너지 퍼즐,중화반응 << 시간관리 실패하면...
-
어디인가요? 성대. 중대 제외하구요 ㅜㅜ
-
건대
chatgpt
이 말은 논리학적인 구조와 관련이 있으며, 특정한 논리적 명제의 변환과 관련된 내용을 다루고 있습니다. 하지만 몇 가지 혼동이나 잘못된 논리적 결론이 포함되어 있는 것 같습니다.
1. **“전제가 참이면 결론이 참”**은 정확한 논리적 규칙입니다. 예를 들어, 가정→결론 형태의 유효한 명제에서 전제가 참이면 결론도 참이어야 합니다. 이는 직관적인 추론에 해당합니다.
2. 대우명제에 대한 설명은 옳습니다. 대우명제는 “A→B“의 형태에서 **“B가 거짓이면 A도 거짓”**이라고 바꾸는 것입니다. 즉, “결론이 거짓이면 전제가 거짓”이 되는 것입니다.
3. 전제 안에 공리가 들어간다는 주장도 논리적으로 가능하지만, 일반적으로 공리는 증명할 필요가 없는 기본적인 진리로 간주되는 원칙들이기 때문에 그 자체로는 참으로 받아들여집니다. 그러나, 공리를 부정하면 무모순이 된다고 말하는 것은 오류입니다. 공리를 부정하면 그것을 기반으로 한 증명이나 이론이 무효화되거나 모순을 일으킬 수 있다는 주장으로 바뀌어야 할 것입니다.
4. **“공리가 거짓이면 무모순”**이라는 결론은 불명확합니다. 논리 시스템에서 공리가 거짓이라면 그 시스템은 모순적일 가능성이 높습니다. 공리가 참이라는 가정은 무모순을 유지하는 데 필요하지만, 공리가 거짓이라고 해서 반드시 무모순이 된다고 말할 수는 없습니다. 오히려 모순을 일으킬 수 있습니다.
5. 결론을 부정하면 무모순이라고 결론짓는 부분은 잘못된 결론입니다. 일반적으로 결론의 부정이 무모순을 의미하지 않습니다. 논리적인 체계에서는 공리나 전제를 부정하는 것이 오히려 모순을 일으킬 수 있습니다.
결론:
이 말은 논리적 규칙을 일부 따르고 있지만, 몇 가지 중요한 오류가 포함되어 있습니다. 특히 공리를 부정하면 무모순이라는 주장과 결론을 부정하면 무모순이라는 결론은 논리학적으로 맞지 않습니다.
본좌의 말이 맞다