[수학칼럼] 등차수열 정복하기
안녕하세요 수학을 가르치고싶은 저능부엉이입니다
등차수열의 개념은 상당히 간단하지만
생각보다 현장에서 당황하게 할 수 있는 문제가
언제든지 출제될 수 있는 파트입니다
그렇기 때문에 오늘은 등차수열 문제에서는
어떻게 접근해야 하는지를 설명해보도록 하겠습니다
문제 접근시 섣부르게 a_n=a+(n-1)d 로 변형하지 마라!
a_n에 대한 공식은 항상 맨 나중에서야 사용해야 합니다.
답을 도출해야 하는 경우나 문제가 너무 풀리지 않을경우에
마지막의 보루로 사용해야 하는 공식입니다 그 이유는
이 식이 문제의 수열을 이해하는데 그렇게 도움되지 않기 때문입니다. 비슷한 맥락에서 S_n공식도 왠만해서는 쓰지 않는 것이 좋습니다
등차수열의 핵심은 항과 항 사이의 관계이다
이 점을 반드시 기억해야 합니다
그렇기에 저는 다음의 3개를 먼저 생각하길 권합니다
1) 등차중항의 성질
2) 특정 항으로 다른 항을 표현하기
3) 모르면 직접 한번 나열해보기
한번 실제 기출과 함께 자세히 설명해보도록 하겠습니다
240612 입니다. 현장에서 12번 치고 어려워서
의외로 발목잡혔던 사람이 많았던 문제로 기억합니다
앞에서 말했듯이 특정 항으로 다른 항을 표현해봅시다
a_2=-4 를 알고 있기에 다른 항은 -4에 공차를 더한 형태로 표현 가능하군요
이외에는 잘 모르기에 한번 나열해보도록 하죠
그런방식으로 A와 B의 내용물을 일단 나열해봤습니다
나열하니 여기서 b_n이 공차가 2d인게 바로 보이군요
이렇게되면 문제조건을 만족하는
케이스를 바로 알수있습니다
a_20을 구할때도 우리는 a_2의 값을 알고 있기에
굳이 a_n=a+(n-1)d를 쓰지 않고
a_2에다 공차를 18번 더한 걸로 구할 수 있습니다
이렇듯 문제사항을 한번에 바로 알아볼 수 없을경우는
a_n을 직접 나열해봐서
규칙성이나 기타성질을 판단해보는 것도 나은 선택이 될 수 있습니다
24수능 11번입니다
먼저 |a_6|=a_8
이기에 우리는 a_7=0임을 알 수 있습니다
그리고 옆에 시그마를 풀어봅시다
여기서 중요한건 a_1과 a_6을 a_7과 공차로 표현하는것입니다. 마지막으로 시그마 a_n 15를 등차중항의 성질을 써서
15×a_8로 표현하고 a_8=4,
따라서 답은 60으로 내면 끝입니다
이 문제는 비록 쉬운 난이도였지만 a_1과 a_6을
이미 알고있던 a_7을 중심으로 나타내고
마지막에서 시그마 값을 등차중항의 성질을 이용하여
일반항×자연수의 형태로 표현해서 공식없이
빨리 답을 낼수 있기에 선정해보았습니다
다음은 23년도 7월 학평 12번 입니다
(가) 조건 해석은 얼핏 봐서는 복잡해보입니다
하지만 알다시피 등차중항의 성질을 쓰면
(가)조건이 a_m+1<0 임을 알려준다는 것을 알 수 있습니다
그럼 이제 (나)조건을 어떻게 풀지가 관건입니다
이때 우리는 a_m+1을 중심으로 식을 세워봅시다
이렇게 a_m+1을 기준점으로 두면
a_m+1의 수치가 좁혀지고
24<a_21<29의 조건을 쓰면
t=-2임이 바로 밝혀집니다
이문제에서 주의해야 할 포인트는 다음과 같습니다
1.등차중앙의 성질을 통해 a_m+1<0임을 알아내야했고
2.a_m+1을 중심으로 분석하여 a_m+1의 값을 특정해야함
이상으로 3문항을 풀어봤습니다
제가 앞의 3문제를 풀며 보였듯이
저는 a_n=a+(n-1)d의 공식을 절대 쓰지 않았습니다
대부분의 등차수열 문제는 굳이 사용하지 않는것이
더 좋은 풀이가 되기 때문입니다
제 글을 다 읽으셨다면 알 수 있듯이
앞에 제가 말한 3개중에서도
특정항을 기준으로 다른 항을 표현
이건 진짜 등차수열에서 매우매우 중요한 부분이며
제가 가장 강조하고 싶은 부분입니다
결론적으로 다시 설명하지면
앞에서의 3개를 집중적으로 써야합니다
1.복잡한 계산은 등차중항의 성질로 풀어내기
2.특정항을 기준으로 다른 항을 표현
3.문제 상황에 감이 안잡힐때는 한번 나열해보기
이런 원칙으로 문제를 푼다면 대부분의 등차수열 문제는
한번에 바로 풀릴 수 있을것입니다
읽어주셔서 감사합니다
다음에도 좋은 칼럼으로 찾아뵈겠습니다
[수학칼럼] 정보의 용도 파악
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
낭만으로 가는거야
-
1. 나는 이 분야에 통달한 전지전능한 신이다. 2. 난 이 과목의 못 푸는 문제가...
-
근데 모 정시waiting 컨설턴트는 왜저렇게 공격적으로 말하는거임?? 7
아무리 커뮤라지만 상대가 자기 잠재적 고객 아닌가?? 키배떠서 자기한테 좋을게 뭐가 있다고
-
모의고사 하나 검토 중이고 n제도 하나 검토 중이고 출제팀한테 문제 만들고 해설써서...
-
친동생 올해 고3이고 전남대 희망함 전남대 정시 지원? 보니까 자연계는 사탐...
-
재수생 기준
-
혹여나 누가 입학처에 제 이름대고 취소하겠습니다 하면 어케댐요?
-
좀 더 다채로운 공스타 감성 플래너를 위해 파스텔톤 형광팬을 장만했어요 죽을거같야요!
-
이유는 없음
-
ㅈㄱㄴ
-
작수 22번 0
수험장에서 풀고 검토도 했는데...분명 모든 나뭇가지 다 그렸다고...
-
완성!! 11
-
너무 날먹인가
-
노베 풀이 ㅁㅌㅊ?
-
경희대 자율전공 1
자전은 그럼 mt랑 ot는 누가 주최해요..?? 선배가 없을텐데 1학년들끼리 mt 짜고 그러는건가
-
문제야…
-
고2 내신 뉴런 2
뉴런이랑 문제집 양치기중에 뭐가더 내신따기 좋나요?
-
오 에피 생겼다 2
수능 성적을 써먹진 못했지만 수능 성적으로 에피라도 달았으니 만족해야겠지
-
기출 1회독 하고 뉴런하는데 아직도 문제를 절뚝절뚝거리면서 풀어요,, 한번은 무조건 절어요
-
자존심은 세고 기분은 나쁘고 편하게 돈은벌고싶고 하긴 그게 사람맘이지
-
외국인이 당근문자보거 이렇게 보냿던데
-
림잇교재 자세한거 같은데 읽다가 모르는 부분만 강의들어도 되나요?
-
애초에 컨설팅 상대로 패드립 박은게 좀 그렇긴 함 컨설팅 개싸가지 없는건 맞는데...
-
한바퀴 가까이 돌까요? 644.2인데 가능성 있음?
-
언매 뉴빈데, 매체에서 카톡 대화하는 거랑 홈페이지 이런 거 다 읽고 푸는 건가요? +뜬금없긴 한데
-
41254 51221 고3때 다닌 학원에만 2명있다
-
아 ㅋㅋ 4
순서 거꾸로 삿네
-
레테크 꿀팁 4
싼거사세요
-
왜냐하면 거기에 쓴 돈이 아까워서… 문제는 스카를 안가고 자꾸 집에 쳐박혀있느라…...
-
에이 설마 조발 안 해주겠어?
-
그냥 예년 특정 대학 상위권 표본이 얼마나 진학사 썼는지 보고 한 90프로 썼어?...
-
이번주 계획표 보니까 문학만 있던데 이번주 독서는 엮어읽기 안해도되는건가요?
-
3박4일 숙소 비행기 값 빼고 30이면 적당한가요?
-
https://www.veritas-a.com/news/articleView.html...
-
그런사람이 있어요??
-
돌아오셨다 1
큰손이
-
ㅈㄱㄴ 볼매는 외모 안이뻐도 묘하게 끌리는거죠?
-
각 업체마다 5명 정도만 뽑는거임. 뽑는 기준은 경매마냥 돈 제일 많이 부른...
-
디맥이나하자디맥 10
흥이망이레어삿다
-
언론의 관심 없음 손해배상 청구 사례 없음 '취재가 시작되자' 매직이 필요하긴함 ㅇㅇ
-
이상형 3
장발이고 안경이 잘어울리면 좋아요 덕코도 라유만큼 있어야뎀요
-
투과목 하려면 6
국영수 최소 어느정도 받아놓고 해야할까요 ? 생2지1으로 한번더칠까하는데
-
ㄹㅇ모름
-
국어공부 방향성 3
(커뮤에 글을 많이 안써봐서 읽기 힘들수도있음 양해좀..) 현재 김승리 올오카...
-
레테크 성공하면 5
어떰 기분인가요
-
중앙대는 추추합으로 붙을것같은데 외대 장학금때매 고민되네요ㅠㅠ 정시기다리는...
-
업체에서 먹이는 거 아니랍니다 오르비 자체적으로 먹이나봄 자기들은 모르는일이라고...
-
준학군지 현실 9
애들이 학원은 많이 다니는데 모고 성적은 별로 학교수업은 쉽다고 안듣지만 내신...
신.
고능부엉이
캬
고능아 뭐냐
햄이그러기있음?
ㄹㅈㄷㄱㅁ
아주 좋아요
고오능
좋습니다
등차중앙 아니고 등차중항이욥
오타났어용
뭐야 진짜 등차중항이네...
처음 암
발음 비슷해서 그런 듯요
진짜 고능아네
특정부엉이..
그래프 그릴수도 있지요
닉값해주세요 너무 고능하네
닉값못하시넴..
닉변 필요
항들간의 관계를 생각하기
정말 중요한 부분이라고 생각합니다
잘 읽었어요 :)
바로 그게 제가 강조하는 부분이에요
수식은 항들의 관계를 무시하게되는 경향이 있더라고요
오오