미적분 자작문제 하나!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
우산 써도 눈이 안으로 들어오네
-
연대냐고대냐 0
연정외연로 vs 고정외고로 영어2에 수망이라 합격 확률은 비슷하게 나오네요
-
안녕하세요, 학교별 의대 면접 분석 칼럼 작성하고 있는 '의대합격 LTP'입니다....
-
합격예측 0
지금 표본 ㅈㄴ부족한 낙지는 암 의미 없지? 왤케 짜지 불안하겤ㅋㅋ
-
수능 채점 결과 D-8 10
모두가 해피한 등급 컷이 나오길
-
애플워치랑 안경 안 가져왓어
-
후
-
후
-
화작 1컷100 언매90 확 2등급블랭크 미85 기89 영어 7퍼 물 50 화...
-
중앙대 가능할까요? 수학때문에 어디 넣어야될 지 모르겠네요..
-
선임 중에 샤워실에서 후임을 향해 소변을 누는 사람이 있었음. 근데 그거 빼면...
-
별로 없어요..?? 질문자로서 쓰기만 해봤지 답변자로서는 처음인데 질문이 이렇게 없는게 맞나..?
-
내취향 여캐일러 2
-
왜냐면 재수하면서 이원준 김젬마 전형태 김동욱 박광일쌤 수업 들어봤어서 약간 어떻게...
-
공부야 말로 진짜 아무나 하는게 아닌데
-
제발 메가대로만 7
더 내려가면 나 ㅈ된다
-
샤워하다 소변 봐도 괜찮다?…의사들 "생산적인 멀티태스킹" 4
비밀이 아닌 비밀이 하나 있다. 많은 사람이 샤워하다 오줌을 누는 것이다. 샤워하는...
-
쓰레기통 없을 때 에르메스 쇼핑백같은 거에 쓰레기 담아서 들고다니면 나도 모르게...
-
수능때 10분 남음 근데 다른걸 망함
-
설연의대 정도 되려나
-
사랑해 자기야 5
별 의미는 없고 그냥 사랑고백을 해보고 싶었어요
-
굿모닝 2
ㅎㅎ
-
저도 맞팔받아요 11
-
탐구는 작년보다 더 내려갔노
-
내가 "나는 말을 잘 못하는게 고민이얌..." 이랬는데 단체로...
-
독서같은 경우에 이원준t 듣고나서 이해가 안되는 부분 큐엔에이로 물어보기도 하고,...
-
그냥 공부하지 말고 유투브해 유투브 님들이 공부에 쏟는 노력 절반만 유투브에 쏟아도...
-
해커스 진단테스트 50개 중에 29개 맞았어요 타임어택이 수능 10배인 것 같은데..
-
고3때 하던짓 3
자습시간에 패드로 문제푸는척 하면서 원신 가챠돌리기 경제위기 온 스리랑카로 우회결제해서 싸게 현질
-
삐리빠라뽀?
-
냥대 간호 0
이거 냥대 간호 안되려나요 진학사 4칸이고 텔그 40프로인데. .....
-
고1 때 물리 선생님이 바이럴 겁나 했고 난 거기에 당했끌려서 선택했음
-
독재 공부장소때문에 고민입니다 ㅠ. 올해는 독재 다녔었는데, 거리가 있다보니...
-
하...
-
95퍼센트가 내신도태정시러행인데 정시에도 내신이 들어가니까..... 흠
-
우웃흐응 1
?
-
진학사 4칸 0
진학사 4칸이면 합격 거의 불가능인가요? 그리고 지금 4칸이면 실채점하고 표본 많이...
-
늦겠다늦어 7
이건 택시야
-
현행 수능 100% 전형처럼 최후의 계층이동 사다리 전형 하나는 꼭 필요하다고...
-
확통 컷 0
85( 62+23)인데 2 뜨겠죠?
-
15 넘어가는게 없고 다 11 12 13 이러는데 갓반고인가 학종에서 내신 볼때...
-
실제로 쪽지 보내서 동일인인 것도 확신한 적 있는데 뭔 허언충 새끼들이 이렇게 많은지 ㅋㅋ
-
23수능 : 현역, 정말 아무것도 안하고 수학 시2발점 들음 15365 (언미물화)...
-
내 희망컷 4
화작1컷91 미적공통틀96표점148 물리1컷42 생명2컷40
-
그게 나야 바 둠바 두비두밥~ ^^
-
왜 난 아직 수술실도 못드갔을까
-
중1때까지는 출석번호까지 외웠는데 중2때부터는 이름만 간신히 외움,,,,,, 담배...
-
인생쓰닥의 희망컷 12
언매 91 선택1틀_ 기적적으로 1컷 미적 88 선택1틀_ 백분위 97은 나왔으면...
-
오버워치할사함 0
구해
문제 푸는데 큰 지장있는건 아니겟...지만? g (0)>0 입니다
풀이좀 올려주세요
일단 g (-1)=0, f(x)=f (x) 놓고 시작
(가)조건에서 f (3)=|f'(3)|>=0이므로 결국 f (3)>=0
(나)조건 부등식 왼쪽은 정적분~급수에서 오른쪽 높이잡기한것
거기에 리미트 n무한대 붙이면 바로 오른쪽 식과 똑같이 정적분됨
근데 오른쪽 높이잡기 한게 정적분 값보다 작으려면 그함수는 감소함수여야함
(증가함수면 오른쪽 높이잡기한게 정적분 보다큼)
근데 a,h에 따라 g (x)는 양의실수에서 항상 감소
따라서 x> 에서 g'(x)=f(x)<=0
이제 (가), (나)조건을 합치면 x>0에서 f (x)<=0이어야 되는데 f (3)>=0이므로
f (3)=f' (3)=0이 되야하고 (0에서 극대값이고 그값이 x축과 접함)
f는 최고차항이 음수인 삼차함수 그래프
g (x)는 도함수인 f (x)그래프에 따라 개형을 그리면 최고차항이 음수이고
x=0에서 극대값을 가지고 g (x)=0이 x=3에서 삼중근,x=-1에서 한개 실근을 가져야 |g (x)|가 양의실수에서 미분가능
이제 대입해서 계산하면 답5번
첫줄에 g'(x)=f (x)
도출된 g(x)가 항상 나 조건을 만족하나요? g(x)에서 x=3에서 양음 부호가 바뀌는데 나 조건에서 왼쪽 식에서 a=2 h = 2라고 가정하면 x=2에서 x=4까지의 오른쪽 잡기가 되는데 이때 오른쪽으로 잡아서 생기는 직사각형들의 면적이 x=3 이하에서는 양수이고 x=3 이상에서는 음수인데 이때 x=2에서 x=4까지의 적분값이 크다고 확신할 수 있는지 궁금합니다.
감소하는 형태로 X축 밑으로가면 직사각형의 넓이가 정적분의 넓이 값보다 커지지만 값이 음수이므로 필연적으로 항상 작을 수 밖에 없습니다
아 그렇네요 감사합니다.
댓글다신줄 몰랐네요..ㅈㅅ알람이 한번만 떠서 달빛님이 잘 설명해드림 ㅇㅇ
만약 f의 중근아닌 또 다른 실근이 x>0에서 존재하면 위의 해설과는 다른 결과를 낳을 수도 있지 않나요?
중근아닌 실근이 x>0에서 존재하면 양의실수에서 f (×)<=0라는 조건을 만족시키지 않으니 실근한개는 음수에서 생겨야 하겠져
아 g(x)가 항상 감소하니 맞군요
이 문제 (가) 표현이 마음에 드네요 평소에도 이런 표현으로 문제 나오지 않을까 생각했던 부분인데 굉장하십니다 ㅋㅋ
뭘요 ㅋㅋ 작년수능b 30번 f'(x)=무리식>=0 보고 좋아보여서 절댓값으로 바꿔본 거 뿐이에요
미적자작문제 검색하다 풀어봤는데 정말 좋네요^^
미적분 자작문제 시간되실때 더 올려주세요!ㅎㅎ
문제 되게 좋네요~
감사합니다 자주풀러오세요