19. 평면벡터 문제 하나 풀고가세요
ans.pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
리 2
리
-
버 0
버
-
풀 0
풀
-
결과가 끝까지 만족스럽지 않지만 떠나야 할 때가 왔구나 하고 싶은 것도 없는데
-
2026 수능! 겁내지 말고 주어진 시간에 끝까지 최선을 다하는 시간이 되길!!
-
올해 수능을 쳤고요 수능을 정말 심하게 망쳤습니다.. 6,9모때는 중경은 대부분...
-
탐구과목은 물1물2 선택했습니다
-
전 2
-
기 0
-
쥐 3
-
모자 쓰고 다녀야징
-
아 눈오네 2
-
뭐냐 나 잔다 6
내일은 또 뭐하지
-
어떻게 위로해주는게 좋을까
-
고데기 할말? 3
스타일링은 못 하고 안하면 90퍼 확률로 머리가 철수처럼 돼서 그거 방지용으로...
-
오드구오의 데뷔 정규앨범 사클래퍼 특유의 날것 그대로의 느낌과 야마가 듣기 좋게...
-
다들 안 자고 머함 10
난 일어난거임!
-
꿈조차 없던 놈의 노랠 이젠 다들따라불러 엄마 랄랄라랄라 1
1년 전 무너졌던 어린애가 아냐 이젠 달라 엄마 난나나난난
-
후후
-
이미지 써드림 25
머리만 말리고
-
잘자 굿나잇 0
-
마감
-
절대로 오르비언들을 놀라게해선 안돼!
-
님들님들 급함 6
프사 추천좀
-
피오르 같은데 말고 메가스터디에서 40만원대에 정시 상담 해주는 거 있는걸로 아눈데...
-
이미지적어드림 30
몇명만
-
좀보이드 해볼까 근데 친구들이 이 게임을 같이 할까
-
지금 반도체가 취업 제일 힘듬. 그냥 똑같이 3d업무 야가다인거 기계가서 설비하는게 취업도 편할듯
-
기분탓인가
-
해파리~ 지역을 지~키자~!
-
작년에 비해 국어수학 표점이 낮으니까 작년과 환산방식이 동일하다는 가정하에 표점...
-
갑자기 유튜브가 너무 재밌다
-
재밌었고 감사했습니다 ㅎㅎ 인증같은거 하지말걸 그랬네요
-
게시글 밀기
-
건대 vs 외대 5
건대 경영이랑 외대 자전 or 경제학과 어디 가는게 낫나요? 문과입니다
-
왜 나만 안돼 5
... 열심히 한 수시도 망하고 열심히 한 정시도 망했는데 그러면 내가 학점을 잘...
-
잔다 6
르크
-
이제 자야지 2
이제부터 오르비는 내 공부 기록용이다
-
한시간 전에 찍은건데 음 오랜만에타니좋네요
-
얼버기 2
그닥 잘 자진 못한듯? 30분 자다 깼다가 다시 3시간반정도 잔듯
-
선착순 10
-
이제 글 그만 쓰시고 주무세요 안그럼 궁금해서 제가 못잠
-
로고는 저의 순수창작물이며, AI를 사용하지 않았습니다. (갤럭시노트에서 아이디어...
-
훨씬 남자다워
-
벌써 댓글 400개 씀 ㅁㅊ
-
말해주셈
-
참많다고 생각했는데
좋아요!
ㄳㄳ
항상 좋은글 감사합니다
감사합니다
왜자꾸삽질을하지 평벡에서.. ㅇㅅㅇ
*@}>->----
아까 한분 땜에 암걸리는줄...... 제헌이님도 고생많으셨습니다 ㅋㅋ
ㅋㅋㅋㅋ 감정낭비하는것같아 더이상 대응안하려구요... 제르맹님두요 ㅎㅎ
넵 저도 마지막 댓글 쓰고 보니 남이야 어떻게 접근하든말든 뭔상관인가 싶더라구요 ㅋㅋ
저는 알림이 안울리네요 ㅋㅋ 함 확인하러 가봐야겠네요
하아.... ㅋㅋ 또 써놨네요.
ㅠㅠ 보고왔슴니다 ..
마지막 댓글 써놓고 왔습니다. 저도 여기까지만 상대하게요... ㅋㅋ 제가 수능문제도 못풀정도로 실력이 없어보였나봐요 ㅠ 슬프네요
ㅠㅠ
ㅜㅜ형님 ㅎㅇㅌ!
어떤게시물이에요??ㄷㄷ
크..... 언제나 좋은 글과 문제 감사해요. 저 근데 저번부터 올라오는 문제가 17,18,19번이라고 되어있는데 모의고사 한회 따로 만드시는 중인 건가요?
아뇨 ㅋㅋ 번호는 출제될 것 같은 번호를 만들어서 띄우는 것이에요.
따로 한회분 만들어 올릴까요?
만들어 올리신다면야 냅다 절하고 풀죠.
ㅎㅎ
와ㄷㄷ 갓제헌
낄낄
문제 좋네요 이런 문제 만들어서 올려주시는 거 정말 감사합니다!
감사 합니다 .. !
푸러따!
디게 참신하네요 제헌이 모의고사 수록문항인가요?
위에 댓글있구남..
아뇨 ㅋㅋ 모의고사 수록문항은 따로 이렇게 뽑아서 노출시키면 실전 연습시 방해가 될수 있기때문에 출판물 수록문항을 가져오진 않습니다.
게시물로 업로드 되는 문항들은
모의고사 제작 후 탈락 문항이나, 신규 제작 문항입니다~~
참신하고 좋아여 굳굳
감사합니다 ㅎㅎ
역시벡터는꿀잼
ㅎㅎ 벡터는 만드는것도, 푸는것도 꿀잼이네요.
벡터는 평도든 공도든 계산도 적고 진짜 가장 흥미로운 파트인것 같습니다 ㅋㅋ
ㅎㅎ 그랗죠..
평면벡터가재밌네요 특히
풀이 1번에서 B좌표 어떻게 구한거에요?
수직이라는 것과 점 A의 평행이동을 통해 구합니다. ㅎㅎ
점 A에서 평행이동 하는 건 알겠는데 중간 과정좀 설명해주실 수 있으신가요?
점 A의 x좌표를 보면 원점과 거리가 2이고, 각 OAB는 직각,
OA=2AB이므로 점 A와 B의 y좌표 차가 1이 되어야합니다.
마찬가지로 A의 y좌표를 보면 원점과거리가 k이므로
점 A와 B의 x좌표 차가 k/2가 되어야 하구요 ㅎㅎ
ㅇㅎ 감사합니다 문제 잘풀엇습니다
*@}>->----
저 솔루션봐도 어떻게구하는지 모르겠어요ㅠㅠ...
B(x,y)로잡고 수직조건으로 내적, 직선AB기울기 -3/4인거 이용하면 k가 이상하게나와요ㅠㅠ
직선AB기울기 -3/4는 직선 OA기울기 4/3 에서 나온거같은데.. OP의 기울기가 4/3 입니다 ㅎㅎ
수직이 아니네요 지금보니! ㅋㅋㅋ 감사해유
*_^
탄젠트 쓰면 쉽게 풀리는것을 좌표써가지고 20분간 끙끙대다니 ㅠㅠ
암튼 문제 잘풀었음다
9월 모평전에 봉투모의 꼭 사서 풀게여! ㅎㅎ
기하와 벡터 문제는
그단원에 맞게 좌표평면/공간에서의 기하학적인 정보를 이용해야 해요 ㅎㅎ
무조건 숫자로 싸우려 드는걸 고쳐야 겠군요...
좋은거 배우고 갑니다 ㅎㅎ
ㅎㅎ황티이이빈다.
문제 좋아요!! ㅎㅎㅎ
*@}>->----
으핳 선분AB인거 벡터인줄알고 옆에식에 대입하고 오류인가 뻘생각하느라 혼났네요ㅠㅠ 좋은문제 감사합니다~~
ㅎㅎ
a(1,k/2)=b-(2,k)이니까 b(3,3k/2)
p(x,4x/3), a(2,k)=(x-3,4x/3-3k/2)
이렇게 풀었는데 답이 안나오네요 어디가 잘못된건가요;;ㅠ
A(1, k/2) 가 아니에요.
수직이면 일단 비틀리기때문에 부호가 한개는 달라집니다 ㅎㅎ.. 염두해두시면 실수할일 없으실거예요
바로실모구매하게하는문제 대단하십니다
*^^*
와... 문제 대박이네요..ㄷㄷ
진짜 한참 좌표값 잡고 풀다가
에라 모르겠다 하고 탄젠트 합공식으로 풀었는데,
해결법1 원리가 삼각함수인가요??
*^^* sol1)은 점의 평행이동을 이용하는 풀이입니다~~
좋은 문제 잘 풀었습니다^^ goat..
감사합니다.
아아.. 편한 탄젠트 냅두고 코사인이용해서 돌아갔네요...ㅂㄷㅂㄷ sol1은 생각도 못해봤네요..
고로 구매
ㅎㅎ기울기=tan 값
중요하죠
이문제 제헌이 모의고사에 나오나요?
안나옵니다 ㅋㅋ 새로 제작한 문항입니다.
제가 하나씩 업로드 하는 문제들은 새로 만들거나, 모의고사 탈락문항 등입니다~
점b의좌표가 1,k/2 아닌가요? 가로+2.세로+k 해서 P좌표구햇는데 설명좀요 ㅠㅠ
A->B로 점을 이동시킬 때, x축으로-k/2, y축으로 1만큼 이동시켜야 해요
감사합니다 직관적으로 알아야되는건가요???
아뇨 ㅋㅋ 점의 평행이동 고1 때 배웠던 내용으로 설명 가능합니다.
sol 2)가 의도입니다. ㅎㅎ 대부분 이렇게 푸셨을거같네요
꿀잼 ㄱㅅ요ㅎㅎ
^^
이런 난이도의 문제는 보통 몇분안에 푸는게 좋을까요???
5~10분 사이면 적절할것 같아요
ㅋ 법선기울기 그냥 음수만 붙여서 잠깐 혼선
ㅎㅎ
ㅋㅋ이런문제 재밌음
이 정도면 19번에 나올법한 난이도인가요????
글쎄요 ㅋㅋ 현19번보다 더 어려울거같기도 하고
ㅋㅋ 그러게요 6평 19번보다는 확실히 어렵네욤 ㅋㅋㅋ