물량공급 [311238] · MS 2009 · 쪽지

2015-07-23 14:16:06
조회수 8,271

2011-2016 수학B형 난이도 분석

게시글 주소: https://profile.orbi.kr/0006276941



1. 체감난이도는 만점자 표준점수와 연관이 있다고 가정합니다.

2. 최상위권 체감난이도는 만점자 비율과 연관이 있다고 가정합니다.


3. 용어설명

Z누적 : 만점(원점수 100점) 표준점수에 대한 상위 누적 분포 확률
ex) 예를들어 표준점수 140점은 표준편차로부터 2만큼 떨어져 있으므로 P(Z>2)=2.28%가 산출됩니다.

난이도 by Z : 원점수 100점의 Z누적 값에 대하여 밑이 10인 로그를 취하고 -10을 곱함(= -10*log(Z누적) )
1등급-만점자 비율 : 각 시험의 1등급 취득자 중 각 시험의 만점자 비율을 계산함ex) 2011 수능 만점자 수는 35명, 1등급 인원은 5988명이므로 1등급-만점자 비율은 0.58%

보정 만점자 비율 : 당해년도 수능 응시인원을 기준으로 만점자 비율을 산출함 (수A 이탈 보정)ex) 6평에는 수학B형을 응시하나 수능에서는 수학A형을 응시하는 인원이 상당히 많은 반면 상위권은 이탈이 없다고 가정하여 만점자 비율을 보정함


보정 1등급 비율 : 당해년도 수능 응시인원을 기준으로 1등급 비율을 산출함 (수A 이탈 보정)ex) 6평에는 수학B형을 응시하나 수능에서는 수학A형을 응시하는 인원이 상당히 많은 반면 상위권은 이탈이 없다고 가정하여 1등급 비율을 보정함

난이도 by 만점비율 : -10*log(보정 만점자 비율)

4. 표와 그래프



한계점 : 만점표준점수는 6월 모의평가에서 뻥튀기 될 수 밖에 없음

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.