

수늠특감

수학영역 **미적분**

	단원	쪽수
01	수열의 극한	4
02	급수	16
03	여러 가지 함수의 미분	28
04	여러 가지 미분법	44
05	도함수의 활용	58
06	여러 가지 적분법	74
07	정적분의 활용	88

이책의 구성과 특징

Structure

개념 정리

교과서의 핵심 내용을 체계적으로 정리하였다.

Level 1-Level 2-Level 3

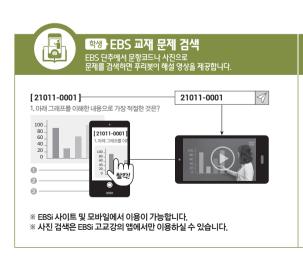
Level 1 기초 연습은 기초 개념의 인지 정도를 확인할 수 있는 문항을 제시하였으며, Level 2 기본 연습은 기본 응용 문항을, 그리고 Level 3 실력 완성은 수학적 사고력과 문제 해결 능력을 함양할 수 있는 문항을 제시하여 대학수학능력시험 실전에 대비할 수 있도록 구성하였다.

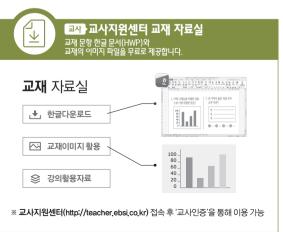
예제 & 유제

예제는 개념을 적용한 대표 문항으로 문제를 해결하는 데 필요한 주요 개념을 풀이 전략으로 제시하여 풀이 과정의 이해를 돕도록 하였고, 유제는 예제와 유사한 내용의 문 제나 일반화된 문제를 제시하여 학습 내용과 문제에 대한 연관성을 익히도록 구성하였다.

대표 기출 문제

대학수학능력시험과 모의평가 기출 문항으로 구성하였으며 기존 출제 유형을 파악할 수 있도록 출제 경향과 출제 의도를 제시하였다.





1. 수열의 수렴과 발산

(1) 수열의 수렴

수열 $\{a_n\}$ 에서 n의 값이 한없이 커질 때, a_n 의 값이 일정한 수 α 에 한없이 가까워지면 수열 $\{a_n\}$ 은 α 에 수렴 한다고 하고, α 를 수열 $\{a_n\}$ 의 극한값 또는 극한이라고 한다.

이때 이것을 기호로

 $\lim a_n = \alpha$ 또는 $n \to \infty$ 일 때 $a_n \to \alpha$

와 같이 나타낸다.

n 수열 $\left\{\frac{1}{n}\right\}$ 에 대하여 n의 값에 따른 $\frac{1}{n}$ 의 값은 다음 표와 같다.

n	1	2	3	4		→	∞
$\frac{1}{n}$	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	•••	→	0

그러므로 n의 값이 한없이 커질 때, $\frac{1}{n}$ 의 값은 0에 가까워진다. 즉, 수열 $\left\{\frac{1}{n}\right\}$ 은 0에 수렴하고 극한값은 0이다. 이를 기호로 나타내면 $\lim_{n\to\infty}\frac{1}{n}=0$ 이다.

 $[\mathbf{0}]$ 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 $a_n=1$ 이면 n의 값이 한없이 커질 때 a_n 의 값은 항상 1이다. 그러므로 $\lim a_n = 1$ 이다.

찰고 $\lim a_n = \alpha$ 는 n의 값이 한없이 커질 때, a_n 의 값이 α 에 한없이 가까워지거나 α 와 같다는 것이다.

(2) 수열의 발산

수열 $\{a_n\}$ 이 수렴하지 않으면 수열 $\{a_n\}$ 은 발산한다고 한다.

다음의 경우는 발산이다.

① 수열 $\{a_n\}$ 에서 n의 값이 한없이 커질 때, a_n 의 값이 한없이 커지면 수열 $\{a_n\}$ 은 양의 무한대로 발산한다고 하고. 이것을 기호로 다음과 같이 나타낸다.

$$\lim a_n = \infty$$
 또는 $n \to \infty$ 일 때 $a_n \to \infty$

② 수열 $\{a_n\}$ 에서 n의 값이 한없이 커질 때, a_n 의 값이 음수이면서 그 절댓값이 한없이 커지면 수열 $\{a_n\}$ 은 음의 무한대로 발산한다고 하고, 이것을 기호로 다음과 같이 나타낸다.

$$\lim_{n \to \infty} a_n = -\infty$$
 또는 $n \to \infty$ 일 때 $a_n \to -\infty$

③ 수열 $\{a_n\}$ 에서 n의 값이 한없이 커질 때, a_n 의 값이 수렴하지도 않고 양의 무한대나 음의 무한대로 발산하 지도 않으면 수열 $\{a_n\}$ 은 진동한다고 한다.

예 수열 $\{(-1)^n\}$ 에 대하여 n의 값에 따른 $(-1)^n$ 의 값은 다음 표와 같다.

п	1	2	3	4	•••	→	∞
$(-1)^n$	-1	1	-1	1	•••	→	진동

그러므로 수열 $\{(-1)^n\}$ 은 진동한다.

수열의 수렴과 발산 예제

수열 $\{a_n\}$ 이 $a_1=1$ 이고 모든 자연수 n에 대하여 $a_{n+1}=(-1)^n \times a_n+1$ 일 때, **보기**의 수열 중에서 수렴하는 것만을 있는 대로 고른 것은?

┤보기├─

$$\neg$$
. $\left\{\frac{a_n}{n}\right\}$

$$\vdash \{a_{n+1}-a_n\}$$

① ¬

풀이 (전략) 수열 $\{a_n\}$ 의 각 항을 구한 후 주어진 수열의 각 항을 구하여 수렴. 발산을 조사한다.

풀이
$$a_1 = 1$$
이고 $a_{n+1} = (-1)^n \times a_n + 1$ 이므로

$$a_2 = (-1)^1 \times a_1 + 1 = 0$$
, $a_3 = (-1)^2 \times a_2 + 1 = 1$, $a_4 = (-1)^3 \times a_3 + 1 = 0$, ...

따라서 수열 $\{a_n\}$ 을 나열하면 1, 0, 1, 0, …과 같다.

ㄱ. 수열
$$\left\{\frac{a_n}{n}\right\}$$
을 나열하면 $\frac{1}{1}$, $\frac{0}{2}$, $\frac{1}{3}$, $\frac{0}{4}$, …이므로 수열 $\left\{\frac{a_n}{n}\right\}$ 은 0에 수렴한다.

ㄴ. 수열
$$\{a_n + a_{n+1}\}$$
을 나열하면 $1, 1, 1, 1, \cdots$ 이므로 수열 $\{a_n + a_{n+1}\}$ 은 1 에 수렴한다.

- 이상에서 수렴하는 수열은 그, ㄴ이다.

3

정답과 **풀이** 4쪽

[21011-0001]

수열 $\{a_n\}$ 에 대하여 $a_n=n^{100-n}+1$ 일 때, $\lim_{n\to\infty}a_n$ 의 값은?

- (1) 1
- ② 2 ③ 3
- (4) **4**
- (5) 5

유제

수렴하는 수열 $\{a_n\}$ 에 대하여 $\lim a_n+2=\lim a_{n+1} imes \lim a_{2n}$ 일 때, 가능한 $\lim a_n$ 의 모든 값의 합은?

- $\bigcirc 1 2 \qquad \bigcirc 2 1 \qquad \bigcirc 3 \bigcirc 0$
- (4) 1
- (5) 2

2. 수열의 극한에 대한 기본 성질

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}a_n=\alpha$, $\lim_{n\to\infty}b_n=\beta$ $(\alpha,\beta$ 는 상수)일 때

(1)
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = \alpha + \beta$$

(2)
$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = \alpha - \beta$$

(3)
$$\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \times \lim_{n \to \infty} b_n = \alpha \beta$$

특히
$$\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n = c\alpha$$
 (단, c 는 상수)

(4)
$$\lim_{n\to\infty}\frac{a_n}{b_n}\!=\!\frac{\lim_{n\to\infty}a_n}{\lim_{n\to\infty}b_n}\!=\!\frac{\alpha}{\beta}\;(단,\,b_n\!\neq\!0,\,\beta\!\neq\!0)$$

예 두 수열
$$\{a_n\}$$
, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}a_n=1$, $\lim_{n\to\infty}b_n=2$ 일 때

(1)
$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = 1 + 2 = 3$$

(2)
$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n = 1 - 2 = -1$$

(3)
$$\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \times \lim_{n \to \infty} b_n = 1 \times 2 = 2$$

$$(4) \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{1}{2}$$

참고 두 수열
$$\{a_n\}$$
, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}a_n=\infty$, $\lim_{n\to\infty}b_n=\infty$ 이고 두 수열 $\left\{\frac{a_n}{b_n}\right\}$, $\{a_n-b_n\}$ 이 수렴할 때, 두 수열 $\left\{\frac{a_n}{b_n}\right\}$, $\{a_n-b_n\}$ 의 극한값은 주어진 식을 수열의 극한에 대한 기본 성질을 이용할 수 있도록 변형하여 구하면 편리하다.

$$\begin{array}{l}
\boxed{(1)} \lim_{n \to \infty} \frac{n+2}{3n+4} = \lim_{n \to \infty} \frac{1+\frac{2}{n}}{3+\frac{4}{n}} = \frac{\lim_{n \to \infty} \left(1+\frac{2}{n}\right)}{\lim_{n \to \infty} \left(3+\frac{4}{n}\right)} \\
= \frac{\lim_{n \to \infty} 1+2\lim_{n \to \infty} \frac{1}{n}}{\lim_{n \to \infty} 3+4\lim_{n \to \infty} \frac{1}{n}} \\
= \frac{1+2\times 0}{3+4\times 0} = \frac{1}{3} \\
\boxed{(2)} \lim_{n \to \infty} (\sqrt{n^2+n}-n) = \lim_{n \to \infty} \frac{(\sqrt{n^2+n}-n)(\sqrt{n^2+n}+n)}{\sqrt{n^2+n}+n} \\
= \lim_{n \to \infty} \frac{n}{\sqrt{n^2+n}+n} = \lim_{n \to \infty} \frac{1}{\sqrt{1+\frac{1}{n}}+1} \\
= \frac{\lim_{n \to \infty} 1}{\lim_{n \to \infty} \sqrt{1+\frac{1}{n}}} + \lim_{n \to \infty} 1 \\
= \frac{1}{1+1} = \frac{1}{2}
\end{array}$$

예제 2 수열의 극한에 대한 기본 성질

$$\lim_{n\to\infty}\frac{2n^2+3n}{n^2+1}\times\lim_{n\to\infty}\frac{\frac{2}{n}+\frac{3}{n^2}}{\frac{1}{n}+\frac{1}{n^3}}$$
의 값은?

- (1) 1
- ③ 3
- (4) **4**
- (5) 5

풀이 전략 수열의 극한에 대한 기본 성질을 이용하여 극한값을 구하면 편리하다.

불이
$$\lim_{n\to\infty}\frac{2n^2+3n}{n^2+1}$$
에서 분자와 분모를 모두 n^2 으로 나누어 계산하면

$$\lim_{n \to \infty} \frac{2n^2 + 3n}{n^2 + 1} = \lim_{n \to \infty} \frac{2 + \frac{3}{n}}{1 + \frac{1}{n^2}} = \frac{2 + 3 \lim_{n \to \infty} \frac{1}{n}}{1 + \lim_{n \to \infty} \frac{1}{n^2}} = 2 \quad \cdots \quad \bigcirc$$

또 $\lim_{n\to\infty}\frac{\frac{2}{n}+\frac{3}{n^2}}{\frac{1}{m}+\frac{1}{3}}$ 에서 분자와 분모에 모두 n을 곱하여 계산하면

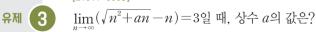
$$\lim_{n \to \infty} \frac{\frac{2}{n} + \frac{3}{n^2}}{\frac{1}{n} + \frac{1}{n^3}} = \lim_{n \to \infty} \frac{2 + \frac{3}{n}}{1 + \frac{1}{n^2}} = \frac{2 + 3 \lim_{n \to \infty} \frac{1}{n}}{1 + \lim_{n \to \infty} \frac{1}{n^2}} = 2 \qquad \dots \dots \oplus$$

①. ⓒ에 의하여

$$\lim_{n \to \infty} \frac{2n^2 + 3n}{n^2 + 1} \times \lim_{n \to \infty} \frac{\frac{2}{n} + \frac{3}{n^2}}{\frac{1}{n} + \frac{1}{n^3}} = 2 \times 2 = 4$$

4

정답과 풀이 4쪽



- ① 2 ② 4
- 3 6
- **4** 8
- (5) 10

[21011-0004]

유제
$$\lim_{n\to\infty}\frac{\sqrt{n^2+n}-2n}{n+1}$$
의 값은?

- $\bigcirc 1 2$ $\bigcirc -1$
- ③ 0
- 4 1
- (5) 2

3. 수열의 극한의 대소 관계

- (1) 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}a_n=\alpha$, $\lim_{n\to\infty}b_n=\beta$ $(\alpha$, β 는 상수)일 때, 모든 자연수 n에 대하여 $a_n \leq b_n$ 이면 $\alpha \leq \beta$ 이다.
- (2) 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\alpha$ (α 는 상수)일 때, 수열 $\{c_n\}$ 이 모든 자연수 n에 대하여 $a_n \le c_n \le b_n$ 이면 $\lim c_n = \alpha$ 이다.
- \bigcirc 여 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 $1-\frac{1}{n} \le a_n \le 1+\frac{1}{n}$ 이면 $\lim_{n\to\infty} \left(1-\frac{1}{n}\right) = \lim_{n\to\infty} \left(1+\frac{1}{n}\right) = 1$ 이므로 $\lim a_n = 1$
- **참고** (1) 위의 (1)에서 모든 자연수 n에 대하여 $a_n < b_n$ 이면 $\alpha \le \beta$ 이다.
 - $a_n = \frac{1}{n}$, $b_n = \frac{2}{n}$ 이면 모든 자연수 n에 대하여 $a_n < b_n$ 이다. 이때 $\alpha = \lim a_n = 0$ 이고 $\beta = \lim b_n = 0$ 이므로 $\alpha \le \beta$ 이다.
 - (2) 위의 (2)에서 모든 자연수 n에 대하여 $a_n < c_n < b_n$ 이면 $\lim c_n = \alpha$ 이다.
 - **데** $a_n = \frac{1}{n}$, $b_n = \frac{3}{n}$, $c_n = \frac{2}{n}$ 이면 모든 자연수 n에 대하여 $a_n < c_n < b_n$ 이다. 이때 $\alpha = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$ 이고 $\lim_{n \to \infty} c_n = 0$ 이므로 $\lim_{n \to \infty} c_n = \alpha$ 이다.
- 참고 어떤 수열의 극한값을 구하기 어려운 경우에는 대소 관계를 이용하면 편리하다.
- 예 수열 $\left\{\frac{\sin n}{n}\right\}$ 의 극한값을 구해 보자.
 - -1<sin n<1이므로

$$-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$$

이때
$$\lim_{n\to\infty}\frac{1}{n}=\lim_{n\to\infty}\left(-\frac{1}{n}\right)=0$$
이므로

$$\lim_{n\to\infty}\frac{\sin n}{n}=0$$

) 수열의 극한의 대소 관계

수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 $\lfloor (2n^2+1)a_n-6n^2 \rfloor < 3n-1$ 을 만족시킬 때, $\lim a_n$ 의 값은?

- 1 1
- ② 2
- ③ 3
- 4
- (5) 5

풀이 전략

주어진 부등식을 푼 후 수열의 극한의 대소 관계를 이용한다.

$$\begin{split} &|(2n^2+1)a_n-6n^2| < 3n-1 \\ &| \lambda| \\ &-3n+1 < (2n^2+1)a_n-6n^2 < 3n-1 \\ &6n^2-3n+1 < (2n^2+1)a_n < 6n^2+3n-1 \\ &\frac{6n^2-3n+1}{2n^2+1} < a_n < \frac{6n^2+3n-1}{2n^2+1} \end{split}$$

이때

$$\lim_{n\to\infty}\frac{6n^2+3n-1}{2n^2+1}=\lim_{n\to\infty}\frac{6+\frac{3}{n}-\frac{1}{n^2}}{2+\frac{1}{n^2}}=\frac{6+3\lim_{n\to\infty}\frac{1}{n}-\lim_{n\to\infty}\frac{1}{n^2}}{2+\lim_{n\to\infty}\frac{1}{n^2}}=3,$$

$$\lim_{n \to \infty} \frac{6n^2 - 3n + 1}{2n^2 + 1} = \lim_{n \to \infty} \frac{6 - \frac{3}{n} + \frac{1}{n^2}}{2 + \frac{1}{n^2}} = \frac{6 - 3\lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n^2}}{2 + \lim_{n \to \infty} \frac{1}{n^2}} = 3$$

이므로

$$\lim_{n\to\infty} a_n = 3$$

3

정답과 **풀이 4**쪽

[21011-0005]

수렴하는 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 부등식

$$n+2 < (2n+1)a_n < 6n+5$$

를 만족시킨다. 자연수 k에 대하여 $\lim a_n = k$ 일 때, 가능한 모든 k의 값의 합을 구하시오.

[21011-0006]

수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 $\frac{2n+3}{n+1} \le 2a_n \le a_n + \frac{n+4}{n+1}$ 를 만족시킬 때, $\lim_{n\to\infty} a_n$ 의 값은?

- ① $\frac{1}{3}$ ② $\frac{1}{2}$ ③ 1
- **4** 2

4. 등비수열의 극한

등비수열 $\{r^n\}$ 의 수렴과 발산은 공비 r의 값의 범위에 따라 다음과 같다.

- (1) r > 1일 때, $\lim r^n = \infty$ (발산)
- (2) r=1일 때, $\lim r^n=1$ (수렴)
- (3) -1 < r < 1일 때, $\lim r^n = 0$ (수렴)
- (4) $r \le -1$ 일 때, 수열 $\{r^n\}$ 은 진동한다. (발산)
- 설명 (1) r>1일 때

r=1+h (h>0)이라고 하면 수학적 귀납법으로부터 모든 자연수 n에 대하여

$$r^n = (1+h)^n \ge 1+nh$$

이때 h>0이므로

$$\lim (1+nh) = \infty$$

그러므로
$$\lim r^n = \infty$$

(2) r=1일 때

수열 $\{r^n\}$ 의 모든 항이 1이므로

$$\lim r^n = 1$$

(3) -1< r< 1일 때

r=0이면 수열 $\{r^n\}$ 은 모든 항이 0이므로

$$\lim r^n = 0$$

 $r \neq 0$ 이면 $\frac{1}{|r|} > 1$ 이므로 (1)에 의하여

$$\lim_{n\to\infty}\frac{1}{|r^n|}=\lim_{n\to\infty}\left(\frac{1}{|r|}\right)^n=\infty$$

따라서
$$\lim_{n\to\infty}|r^n|=\lim_{n\to\infty}\frac{1}{\frac{1}{|r^n|}}=0$$
이므로

$$\lim_{n\to\infty} r^n = 0$$

(4) r≤-1일 때

r=-1이면 수열 $\{r^n\}$ 을 나열하면 $-1, 1, -1, 1, \cdots$ 이므로 진동한다.

r<-1이면 |r|>1이므로 $\lim |r^n|=\infty$ 이고, n이 한없이 커질 때 r^n 의 부호가 교대로 바뀌므로

수열 $\{\gamma^n\}$ 은 진동한다.

- **참고** (1) 수열 $\{r^n\}$ 이 수렴하기 위한 필요충분조건은 $-1 < r \le 1$ 이다.
 - (2) r^n 을 포함한 수열의 극한은 r=1, r=-1을 경계로 범위를 나누어 생각하면 편리하다.

등비수열의 극한

양수 a에 대하여 $\lim_{n\to\infty}\frac{a^{-n-1}+a^{n+1}}{a^{n-1}+a^{-n}}=$ 4일 때, 모든 a의 값의 합은?

- \bigcirc 2

- (5) 3

풀이 전략 a의 값의 범위를 나눈 후 각각의 극한값을 조사하여 a의 값을 구한다.

풀이 주어진 식의 분모. 분자에 a^n 을 곱하면

$$\lim_{n\to\infty}\frac{\frac{1}{a}+a\times a^{2n}}{\frac{1}{a}\times a^{2n}+1}=4$$

- $\text{(i) } 0 < a < 1 일 때, \lim_{n \to \infty} a^n = 0 \text{이므로} \lim_{n \to \infty} \frac{\frac{1}{a} + a \times a^{2n}}{\frac{1}{a} \times a^{2n} + 1} = \frac{1}{a} = 4 \text{에서 } a = \frac{1}{4}$
- (ii) a=1일 때, $\lim_{n\to\infty}\frac{1+1^{2n}}{1^{2n}+1}=1\neq 4$
- (iii) a > 1일 때, $\lim_{n \to \infty} a^n = \infty$, 즉 $\lim_{n \to \infty} \frac{1}{a^n} = 0$ 이므로 $\lim_{n \to \infty} \frac{\frac{1}{a} + a \times a^{2n}}{\frac{1}{a} \times a^{2n} + 1} = \lim_{n \to \infty} \frac{\frac{1}{a} \times \frac{1}{a^{2n}} + a}{\frac{1}{a} + \frac{1}{a^{2n}}} = a^2 = 4$ 에서 a = 2
- (i), (ii), (iii)에서 모든 a의 값의 합은 $\frac{1}{4} + 2 = \frac{9}{4}$

P(2)

정답과 **풀이** 5쪽

7
$$\lim_{n\to\infty} \frac{\left(\frac{1}{2}\right)^{n+1} + \left(\frac{1}{6}\right)^n}{\left(\frac{1}{2}\right)^{n+2} + 4 \times \left(\frac{1}{3}\right)^{n+1}} 의 값을 구하시오.$$

- 첫째항이 2이고 공비가 3인 등비수열 $\{a_n\}$ 에 대하여 첫째항부터 제n항까지의 합을 S_n 이라 할 때,

$$\lim_{n\to\infty}\frac{S_n}{a_n+a_{n+1}}$$
의 값은?

- ① $\frac{1}{8}$ ② $\frac{3}{8}$ ③ $\frac{5}{8}$ ④ $\frac{7}{8}$

$$\lim_{n\to\infty}\frac{n+1}{\sqrt{4n^2+3n}+n}$$
의 값은?

①
$$\frac{1}{3}$$
 ② $\frac{1}{2}$

$$2\frac{1}{2}$$

[21011-0010]

2
$$\lim_{n\to\infty} \frac{(1-n)^3+n^3}{n^2+2n+3}$$
 $\supseteq \mathbb{Z}$

$$(1) -3$$

[21011-0011]

$$\lim_{n\to\infty} n(\sqrt{n^2+2}-n)$$
의 값은?

$$\bigcirc \frac{1}{3}$$
 $\bigcirc \frac{1}{2}$

$$2 \frac{1}{2}$$

$$\lim_{n\to\infty} \left(\frac{1}{n^2+2} \sum_{k=1}^n k + \frac{1}{n^3+3} \sum_{k=1}^n k^2\right)$$
 \cong \cong ?

$$2\frac{1}{3}$$

①
$$\frac{1}{6}$$
 ② $\frac{1}{3}$ ③ $\frac{1}{2}$

$$4\frac{2}{3}$$

$$(5) \frac{5}{6}$$

$$\lim_{n\to\infty} \frac{2^{n-1}\times 3^{n+1}}{6^{n+1}+5^n}$$
의 값은?

$$\textcircled{1} \frac{1}{4}$$

①
$$\frac{1}{4}$$
 ② $\frac{1}{2}$

- 두 자연수 p, q에 대하여 $\lim_{n\to\infty}\frac{3n^{p+1}+n+2}{n^p+n^3+4}=q$ 가 성립할 때, p+q의 값은?
 - \bigcirc 2
- ② **3**
- (3) **4**
- **4** 5
- (5) 6

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}(a_n+b_n)=1$, $\lim_{n\to\infty}\{(a_n)^2-(b_n)^2\}=3$ 일 때, $\lim_{n\to\infty}\frac{a_n}{b_n}$ 의 값은?

(단, $a_n+b_n\neq 0$ 이고, $b_n\neq 0$ 이다.)

- ① -2 ② -1
- ③ 0
- 4 1
- (5) 2

3 다항함수 f(x)가 자연수 n에 대하여 다음 조건을 만족시킨다.

$$(7) \lim_{n \to \infty} \frac{f(n)}{n^2 + 1} = 2$$

(나)
$$\lim_{n\to\infty} (2n+3) f\left(\frac{1}{n}\right) = 3$$

f(2)의 값을 구하시오.

[21011-0017]

- 수열 $\{a_n\}$ 이 $a_1=1$ 이고 모든 자연수 n에 대하여 $a_n+n < a_{n+1} < a_n+n+1$ 을 만족시킬 때, $\lim_{n\to\infty}\frac{a_n}{n^2+1}$ 의 값은?
 - ① $\frac{1}{2}$
- 2 1
- $3\frac{3}{2}$
- ④ 2
- $(5) \frac{5}{2}$

수열 $\left\{ \frac{2^{-n+1} \times k^n + 3^n}{4^n + \left(\frac{1}{3}\right)^{-2n+1}} \right\}$ 이 수렴하기 위한 정수 k의 개수를 구하시오.

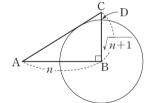
- 일반항이 $a_n = \frac{an^2 + 2n}{n^2 + 1}$ 인 수열 $\{a_n\}$ 과 함수 $f(x) = x^2 + x$ 에 대하여 $\lim_{n \to \infty} \frac{f(a_n) b}{a_n a} = a + 3$ 이 성립할 때, a+b의 값은? (단. a. b는 상수이다.)
 - (1) -8
- ② **-4**
- ③ 0
- 4
- (5) **8**

- 자연수 n에 대하여 곡선 $y=x^2$ 위의 점 $P(n, n^2)$ 이 있다. 직선 OP에 평행하고 곡선 $y=x^2$ 에 접하는 직선을 l_n 이라 하고, 점 P와 직선 l_n 사이의 거리를 d_n 이라 하자. $\lim_{n\to\infty}\frac{d_n}{n+1}$ 의 값은? (단, O는 원점이다.)

 - $\bigcirc \frac{1}{4}$ $\bigcirc \frac{1}{2}$
- 3 1
- (4) 2
- (5) **4**

[21011-0021]

3 n이 자연수일 때, 그림과 같이 $\overline{\mathrm{AB}} = n$, $\overline{\mathrm{BC}} = \sqrt{n+1}$ 이고 $\angle \mathrm{B} = \frac{\pi}{2}$ 인 직각삼각형 ABC가 있다. 점 B를 중심으로 하고 선분 AC에 접하는 원이 선분 BC와 만나는 점을 D라 할 때, $l_n = \overline{\text{CD}}$ 라 하자. 두 상수 a, b $(b \neq 0)$ 에 대하여 $\lim (l_n \times n^a) = b$ 일 때, a+b의 값은?



- $\bigcirc 1 2$
- (2) -1
- ③ 0

4 1

(5) 2

모든 자연수 k에 대하여 $a_k = \lim_{n \to \infty} \frac{k^{n+1} + 3^{n+1}}{2 \times k^n + 2^{2n+1}}$ 이라 할 때, $\sum_{k=1}^{11} a_k$ 의 값을 구하시오.

○ 대표 기출 문제

9

==

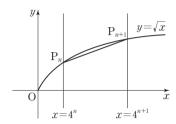
33

20

8-1

기본적인 수열의 극한값을 구하는 계산 문제, 주어진 그래프나 도형으로부터 수열을 구하여 극한값을 구하는 문제 등이 출제되고 있다.

자연수 n에 대하여 직선 x=4"이 곡선 $y=\sqrt{x}$ 와 만나는 점을 P_n 이라 하자. 선분 P_nP_{n+1} 의 길이를 L_n 이라 할 때, $\lim_{n\to\infty}\left(\frac{L_{n+1}}{L_n}\right)^2$ 의 값을 구하시오. [4점]



2017학년도 대수능

출제 의도) 무리함수의 그래프 위의 두 점 사이의 거리를 구한 후 등비수열의 극한을 이용하여 극한값을 구할 수 있는지를 묻는 문제이다.

풀이 두 점 P_n , P_{n+1} 의 좌표는 각각 $(4^n, 2^n)$, $(4^{n+1}, 2^{n+1})$ 이므로

$$L_n = \sqrt{(4^{n+1} - 4^n)^2 + (2^{n+1} - 2^n)^2}$$

$$= \sqrt{(3 \times 4^n)^2 + (2^n)^2}$$

$$= \sqrt{9 \times 16^n + 4^n}$$

따라서

$$\lim_{n \to \infty} \left(\frac{L_{n+1}}{L_n}\right)^2 = \lim_{n \to \infty} \left(\frac{\sqrt{9 \times 16^{n+1} + 4^{n+1}}}{\sqrt{9 \times 16^n + 4^n}}\right)^2$$

$$= \lim_{n \to \infty} \frac{9 \times 16^{n+1} + 4^{n+1}}{9 \times 16^n + 4^n}$$

$$= \lim_{n \to \infty} \frac{9 \times 16 + 4 \times \left(\frac{1}{4}\right)^n}{9 + \left(\frac{1}{4}\right)^n}$$

$$= \frac{9 \times 16 + 4 \lim_{n \to \infty} \left(\frac{1}{4}\right)^n}{9 + \lim_{n \to \infty} \left(\frac{1}{4}\right)^n}$$

$$= \frac{9 \times 16 + 4 \times 0}{9 + 0} = 16$$

16

1. 급수의 수렴과 발산

(1) 급수의 뜻

수열 $\{a_n\}$ 의 각 항을 덧셈 기호 +로 연결한 식

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

을 급수라 하고, 이것을 기호 Σ 를 사용하여 $\sum\limits_{n=1}^{\infty}a_n$ 과 같이 나타낸다. 즉,

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

(2) 급수의 수렴과 발산

급수 $\sum_{n=1}^{\infty} a_n$ 에서 첫째항부터 제n항까지의 합

$$S_n = a_1 + a_2 + a_3 + \cdots + a_n$$

을 이 급수의 제*n*항까지의 부분합이라고 한다.

이때 급수 $\sum_{n=1}^{\infty} a_n$ 의 제n항까지의 부분합의 수열 $\{S_n\}$ 이 일정한 값 S에 수렴하면, 즉

$$\lim_{n\to\infty} S_n = S$$

이면 급수 $\sum\limits_{n=1}^{\infty}a_n$ 은 S에 수렴한다고 한다. 이때 S를 급수의 합이라고 하며, 이것을 기호로

$$\sum_{n=1}^{\infty} a_n = S$$

와 같이 나타낸다

한편, 수열 $\{S_n\}$ 이 발산할 때, 이 급수는 발산한다고 한다.

참고 S_n 을 Σ 로 나타내면 $S_n = a_1 + a_2 + a_3 + \cdots + a_n = \sum\limits_{k=1}^n a_k$ 이므로 $\lim\limits_{n \to \infty} S_n = S$ 는

$$\lim_{n\to\infty}\sum_{k=1}^n a_k = S$$

와 같다

에 급수 $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$ 의 제n항까지의 부분합 S_n 은

$$S_n = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1}$$

이때

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right) = 1$$

이므로

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1$$

급수의 수렴과 발산

수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 하자. $a_n=\frac{2}{(2n+1)(2n+3)}$ 일 때, $\sum\limits_{n=1}^{\infty}a_n+\lim\limits_{n\to\infty}S_n$ 의 값은?

- $2\frac{1}{3}$ $3\frac{1}{2}$ $4\frac{2}{3}$ $5\frac{5}{6}$

풀이 전략 급수 $\sum\limits_{n=1}^{\infty}a_n$ 의 합은 수열 $\{S_n\}$ 의 극한임을 이용하여 값을 구한다.

풀이 $a_n = \frac{2}{(2n+1)(2n+3)} = \frac{1}{2n+1} - \frac{1}{2n+3}$ 이므로 $S_n = \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \left(\frac{1}{7} - \frac{1}{9}\right) + \dots + \left(\frac{1}{2n-1} - \frac{1}{2n+1}\right) + \left(\frac{1}{2n+1} - \frac{1}{2n+3}\right)$ $=\frac{1}{3}-\frac{1}{2n+3}$

그러므로

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{3} - \frac{1}{2n+3} \right) = \frac{1}{3}$$

따라서
$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n$$
이므로

$$\sum_{n=1}^{\infty} a_n + \lim_{n \to \infty} S_n = 2 \lim_{n \to \infty} S_n = 2 \times \frac{1}{3} = \frac{2}{3}$$

4

[21011-0023]

- 첫째항이 2인 수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 할 때, $S_n = \frac{an^2 + n}{n^2 + 1}$ 이다. $a+\sum_{n=1}^{\infty}a_n$ 의 값은? (단, a는 상수이다.)
 - 1)2
- 2 4
- 3 6
- **4** 8
- ⑤ 10

[21011-0024]

유제 ② 일반항이 $a_n = \frac{1}{n(n+1)}$ 인 수열 $\{a_n\}$ 에 대하여 수열 $\{b_n\}$ 의 일반항을 $b_n = a_{n+1}$ 이라 할 때,

 $\sum_{n=1}^{\infty} a_n \times \sum_{n=1}^{\infty} b_n$ 의 값은?

- $\bigcirc \frac{1}{3}$ $\bigcirc \frac{1}{2}$ $\bigcirc 3$ 1 $\bigcirc 4$ 2
- (5) **3**

2. 급수와 수열의 극한 사이의 관계

- (1) 급수 $\sum_{n=1}^{\infty} a_n$ 이 수렴하면 $\lim_{n\to\infty} a_n = 0$ 이다.
- (2) $\lim_{n\to\infty} a_n \neq 0$ 이면 급수 $\sum_{n=1}^{\infty} a_n$ 은 발산한다.
- 설명 (1) 급수 $\sum_{n=1}^{\infty} a_n$ 이 S에 수렴한다고 하자.

급수 $\sum_{n=1}^{\infty} a_n$ 의 제n항까지의 부분합을 S_n 이라 하면

$$\lim_{n\to\infty} S_n = S, \lim_{n\to\infty} S_{n-1} = S$$

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1})$$

$$= \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1}$$

$$= S - S = 0$$

- (2) (1)의 대우는 ' $\lim_{n\to\infty}a_n$ $\neq 0$ 이면 급수 $\sum_{n=1}^{\infty}a_n$ 은 발산한다.'이다.
- $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} a \\ n+1 \end{aligned} \end{aligned}$ 에 대하여 $a_n = \frac{n}{n+1}$ 이라 하면

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{n+1}$$

$$= \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1 \neq 0$$

따라서 급수 $\sum_{n=1}^{\infty} \frac{n}{n+1}$ 은 발산한다.

<mark>참고</mark> (1)의 역은 성립하지 않는다. 즉, $\lim_{n\to\infty}a_n=0$ 이라고 해서 급수 $\sum_{n=1}^{\infty}a_n$ 이 반드시 수렴하는 것은 아니다.

예를 들어 급수
$$\sum\limits_{n=1}^{\infty}rac{1}{\sqrt{n+1}+\sqrt{n}}$$
에 대하여 $a_n=rac{1}{\sqrt{n+1}+\sqrt{n}}$ 이라 하면

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

그러나 급수 $\sum\limits_{n=1}^{\infty}a_{n}$ 의 제n항까지의 부분합을 S_{n} 이라 하면

$$\begin{split} S_n &= \frac{1}{\sqrt{2} + \sqrt{1}} + \frac{1}{\sqrt{3} + \sqrt{2}} + \cdots + \frac{1}{\sqrt{n+1} + \sqrt{n}} \\ &= \frac{\sqrt{2} - \sqrt{1}}{(\sqrt{2} + \sqrt{1})(\sqrt{2} - \sqrt{1})} + \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} + \cdots + \frac{\sqrt{n+1} - \sqrt{n}}{(\sqrt{n+1} + \sqrt{n})(\sqrt{n+1} - \sqrt{n})} \\ &= (\sqrt{2} - \sqrt{1}) + (\sqrt{3} - \sqrt{2}) + \cdots + (\sqrt{n+1} - \sqrt{n}) \\ &= \sqrt{n+1} - 1 \end{split}$$

그러므로

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} (\sqrt{n+1} - 1) = \infty$$

그 급수와 수열의 극한 사이의 관계

수열 $\{a_n\}$ 의 일반항이 $a_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$ 일 때, **보기**에서 수렴하는 것만을 있는 대로 고른 것은?

$$\neg \cdot \sum_{n=1}^{\infty} \sqrt{n} a_n$$

$$-\sum_{n=1}^{\infty} 2a_n$$

$$\vdash \cdot \sum_{n=1}^{\infty} \frac{a_n}{\sqrt{n}\sqrt{n+1}}$$

① ¬

② L

37. L

(4) L. T (5) 7. L. T

 $\lim_{n\to\infty}a_n \pm 0$ 이면 급수 $\sum\limits_{n=1}^\infty a_n$ 은 발산하고, $\lim_{n\to\infty}a_n = 0$ 이면 급수 $\sum\limits_{n=1}^\infty a_n$ 을 계산하여 수렴, 발산을 조사한다. 풀이 전략

$$\exists 0 \quad \neg. \lim_{n \to \infty} \sqrt{n} \, a_n = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}} + 1} = \frac{1}{2} \neq 0$$

따라서 급수 $\sum_{n=1}^{\infty} \sqrt{n} a_n$ 은 발산한다.

$$-\lim_{n\to\infty}2a_n=\lim_{n\to\infty}\frac{2}{\sqrt{n+1}+\sqrt{n}}=0$$

급수
$$\sum\limits_{n=1}^{\infty}2a_n$$
의 제 n 항까지의 부분합을 S_n 이라 하면 $2a_n=\frac{2}{\sqrt{n+1}+\sqrt{n}}=2(\sqrt{n+1}-\sqrt{n})$ 이므로

$$S_n = 2(\sqrt{2} - \sqrt{1}) + 2(\sqrt{3} - \sqrt{2}) + 2(\sqrt{4} - \sqrt{3}) + \dots + 2(\sqrt{n} - \sqrt{n-1}) + 2(\sqrt{n+1} - \sqrt{n}) = 2(\sqrt{n+1} - 1)$$

이때 $\lim S_n = \infty$ 이므로 주어진 급수는 발산한다.

$$\Box \cdot \lim_{n \to \infty} \frac{a_n}{\sqrt{n}\sqrt{n+1}} = \lim_{n \to \infty} \frac{1}{\sqrt{n}\sqrt{n+1}(\sqrt{n+1}+\sqrt{n})} = 0$$

급수
$$\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{n}\sqrt{n+1}}$$
의 제 n 항까지의 부분합을 S_n 이라 하면 $\frac{a_n}{\sqrt{n}\sqrt{n+1}} = \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}} = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}$ 이므로
$$S_n = \left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}}\right) + \cdots + \left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}}\right) + \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right)$$

$$=1-\frac{1}{\sqrt{n+1}}$$

이때 $\lim S_n = 1$ 이므로 주어진 급수는 1에 수렴한다.

이상에서 수렴하는 것은 ㄷ이다.

P(2)

[21011-0025]

수열 $\{a_n\}$ 의 첫째항부터 제n항까지의 합을 S_n 이라 하자. 수열 $\{S_n\}$ 이 수렴할 때.

$$\lim_{n\to\infty} \frac{2n+3}{na_n+\sqrt{4n^2+n}}$$
의 값을 구하시오.

3. 급수의 성질

두 급수 $\sum\limits_{n=1}^\infty a_n$, $\sum\limits_{n=1}^\infty b_n$ 이 모두 수렴하고, $\sum\limits_{n=1}^\infty a_n = S$, $\sum\limits_{n=1}^\infty b_n = T$ 라 할 때

(1)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

= $S + T$

(2)
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

= $S - T$

(3)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

= cS (단, c 는 상수)

설명 두 급수 $\sum\limits_{n=1}^{\infty}a_n$, $\sum\limits_{n=1}^{\infty}b_n$ 의 제n항까지의 부분합을 각각 S_n , T_n 이라 하면 $\lim S_n = S$, $\lim T_n = T$

(1) 급수
$$\sum\limits_{n=1}^{\infty}(a_n+b_n)$$
의 제 n 항까지의 부분합을 U_n 이라 하면 $U_n=S_n+T_n$ 이므로 $\lim\limits_{n\to\infty}U_n=\lim\limits_{n\to\infty}(S_n+T_n)=\lim\limits_{n\to\infty}S_n+\lim\limits_{n\to\infty}T_n$ $=S+T$

$$(2)$$
 급수 $\sum\limits_{n=1}^{\infty}(a_n-b_n)$ 의 제 n 항까지의 부분합을 V_n 이라 하면 $V_n=S_n-T_n$ 이므로 $\lim\limits_{n\to\infty}V_n=\lim\limits_{n\to\infty}(S_n-T_n)=\lim\limits_{n\to\infty}S_n-\lim\limits_{n\to\infty}T_n$ $=S-T$

(3) 급수
$$\sum\limits_{n=1}^{\infty}ca_n$$
의 부분합을 W_n 이라 하면 W_n = cS_n 이므로
$$\lim_{n\to\infty}W_n=\lim_{n\to\infty}cS_n=c\lim_{n\to\infty}S_n$$
= cS

$$\sum_{n=1}^{\infty}a_n=1$$
, $\sum_{n=1}^{\infty}b_n=2$ 일 때

(1)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

= 1 + 2 = 3

(2)
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

= 1-2=-1

(3)
$$\sum_{n=1}^{\infty} 3a_n = 3\sum_{n=1}^{\infty} a_n = 3 \times 1 = 3$$

$$(4) \sum_{n=1}^{\infty} (2a_n + 3b_n) = \sum_{n=1}^{\infty} 2a_n + \sum_{n=1}^{\infty} 3b_n = 2\sum_{n=1}^{\infty} a_n + 3\sum_{n=1}^{\infty} b_n$$
$$= 2 \times 1 + 3 \times 2 = 8$$

예제 3 급수의 성질

두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty}(a_n+b_n)=3$ 이고 모든 자연수 n에 대하여 $\sum\limits_{k=1}^{n}(a_k-b_k)=\frac{n}{n+1}$ 일 때

 $\sum_{n=1}^{\infty} (2a_n + 3b_n)$ 의 값은?

- ③ 7
- (4) 8
- (5) **9**

급수의 성질을 이용하여 $\sum\limits_{n=1}^\infty a_n$, $\sum\limits_{n=1}^\infty b_n$ 의 값을 구한 후 $\sum\limits_{n=1}^\infty (2a_n+3b_n)$ 의 값을 구한다.

풀이
$$\sum_{k=1}^{n} (a_k - b_k) = \frac{n}{n+1}$$
에서 $\sum_{k=1}^{n} (a_k - b_k) = S_n$ 이라 하면
$$\sum_{n=1}^{\infty} (a_n - b_n) = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1$$

이때 $\sum_{n=1}^{\infty}(a_n+b_n)=3$ 에서 $a_n+b_n=c_n$, $\sum_{n=1}^{\infty}(a_n-b_n)=1$ 에서 $a_n-b_n=d_n$ 이라 하면 $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{c_n + d_n}{2} = \frac{1}{2} \sum_{n=1}^{\infty} c_n + \frac{1}{2} \sum_{n=1}^{\infty} d_n = \frac{1}{2} \times 3 + \frac{1}{2} \times 1 = 2$ $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{c_n - d_n}{2} = \frac{1}{2} \sum_{n=1}^{\infty} c_n - \frac{1}{2} \sum_{n=1}^{\infty} d_n = \frac{1}{2} \times 3 - \frac{1}{2} \times 1 = 1$

$$\sum_{n=1}^{\infty} (2a_n + 3b_n) = \sum_{n=1}^{\infty} 2a_n + \sum_{n=1}^{\infty} 3b_n = 2\sum_{n=1}^{\infty} a_n + 3\sum_{n=1}^{\infty} b_n$$
$$= 2 \times 2 + 3 \times 1 = 7$$

3

유제
$$4$$
 수열 $\{a_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty}\!\left(rac{a_n}{2}\!+\!rac{\sqrt{n}}{n\!+\!1}\!-\!rac{\sqrt{n\!+\!1}}{n\!+\!2}
ight)\!=\!3$ 일 때, $\sum\limits_{n=1}^{\infty}\!a_n\! imes\!\sum\limits_{n=1}^{\infty}\!\left(rac{\sqrt{n}}{n\!+\!1}\!-\!rac{\sqrt{n\!+\!1}}{n\!+\!2}
ight)$ 의 값은?

- ① $\frac{1}{2}$ ② $\frac{3}{2}$
- $3\frac{5}{2}$
- $4\frac{7}{2}$

4. 등비급수

(1) 등비급수의 뜻

첫째항이 a $(a \neq 0)$ 이고 공비가 r인 등비수열 $\{ar^{n-1}\}$ 에 대하여 급수

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots$$

을 첫째항이 a이고 공비가 r인 등비급수라고 한다.

(2) 등비급수의 수렴과 발산

첫째항이 $a\;(a\! =\! 0)$ 이고 공비가 r인 등비급수 $\sum\limits_{n=1}^{\infty}ar^{n-1}$ 은

- ① |r| < 1일 때, $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$
- ② $|r| \ge 1$ 일 때, 발산한다.
- 설명 γ 의 값의 범위에 따라 나누면 다음과 같다.
 - ① |r|<1일 때

급수 $\sum\limits_{n=1}^{\infty} ar^{n-1}$ 의 제n항까지의 부분합을 S_n 이라 하면

$$S_n = \frac{a(1-r^n)}{1-r}$$

따라서 $\lim r^n = 0$ 이므로

$$\sum_{n=1}^{\infty} ar^{n-1} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a(1-r^n)}{1-r} = \frac{a}{1-r}$$

② |r|≥1일 때

 $\lim_{n \to \infty} ar^{n-1} \neq 0$ 이므로 급수와 수열의 극한 사이의 관계에 의하여 등비급수 $\sum\limits_{n=1}^{\infty} ar^{n-1}$ 은 발산한다.

$$\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$

- ② 등비급수 $\sum_{n=1}^{\infty} 2^n$ 은 공비가 2이고, $|2| \ge 1$ 이므로 이 급수는 발산한다.
- **참고** 급수 $\sum_{n=1}^{\infty} ar^{n-1}$ 에서 a=0이면 $\sum_{n=1}^{\infty} ar^{n-1}=0$ 이다.
- 참고 닮은 도형이 한없이 반복되는 그림에서 도형의 길이의 합이나 넓이의 합은 등비급수로 나타내어진다.

$$\sum_{n=1}^{\infty} 2^n (3^{-n} + 4^{-n+1})$$
의 값은?

- **2** 6
- ③ 7
- (4) 8
- (5)9

지수법칙을 이용하여 주어진 식을 정리한 후 급수의 성질과 등비급수의 합을 이용하여 값을 구한다.

 $\underset{n=1}{\overset{\infty}{=}} 0 \sum_{n=1}^{\infty} 2^n (3^{-n} + 4^{-n+1}) = \sum_{n=1}^{\infty} 2^n \left(\frac{1}{3^n} + 4 \times \frac{1}{4^n} \right)$ $=\sum_{n=1}^{\infty}\left\{\left(\frac{2}{3}\right)^n+4\times\left(\frac{1}{2}\right)^n\right\}$

이때

$$\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n = \frac{\frac{2}{3}}{1 - \frac{2}{3}} = 2, \sum_{n=1}^{\infty} \left\{4 \times \left(\frac{1}{2}\right)^n\right\} = \frac{2}{1 - \frac{1}{2}} = 4$$

$$\sum_{n=1}^{\infty} 2^{n} (3^{-n} + 4^{-n+1}) = \sum_{n=1}^{\infty} \left\{ \left(\frac{2}{3} \right)^{n} + 4 \times \left(\frac{1}{2} \right)^{n} \right\}$$
$$= \sum_{n=1}^{\infty} \left(\frac{2}{3} \right)^{n} + \sum_{n=1}^{\infty} \left\{ 4 \times \left(\frac{1}{2} \right)^{n} \right\} = 2 + 4 = 6$$

2

- ① 20
- ② 22
- ③ 24
- (4) 26
- (5) 28

[21011-0029]

수열 $\{a_n\}$ 에 대하여 $a_n = \frac{1}{2^n} \sin \frac{n\pi}{2}$ 일 때, $\sum_{n=1}^{\infty} a_n$ 의 값은?

- ① $\frac{1}{10}$ ② $\frac{1}{5}$ ③ $\frac{3}{10}$ ④ $\frac{2}{5}$ ⑤ $\frac{1}{2}$

- 수열 $\{a_n\}$ 에 대하여 $a_n = \sum_{k=1}^n (k+1)^2 \sum_{k=1}^n (k^2+1)$ 일 때, $\sum_{n=1}^\infty \frac{1}{a_n}$ 의 값은?
 - 1 1
- 2 2
- 3 3
- ⑤ 5

[21011-0031]

- 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\lim_{n\to\infty}a_n=2$, $\sum\limits_{n=1}^{\infty}(3a_n-2b_n)=4$ 일 때, $\lim_{n\to\infty}b_n$ 의 값은?
 - ① 1
- ② 2
- ③ 3
- 4
- (5) **5**

- 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty} 3a_n = 6$, $\sum\limits_{n=1}^{\infty} (a_n + b_n) = 3$ 일 때, $\sum\limits_{n=1}^{\infty} b_n$ 의 값은?
 - 1 1

- (5) 5

- 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $a_n=\frac{1}{2^n}$, $b_n=\frac{1}{3^n}$ 일 때, $\sum\limits_{n=1}^{\infty}a_n imes\sum\limits_{n=1}^{\infty}b_n-\sum\limits_{n=1}^{\infty}(a_nb_n)$ 의 값은?
- ① $\frac{1}{10}$ ② $\frac{1}{5}$ ③ $\frac{3}{10}$ ④ $\frac{2}{5}$ ⑤ $\frac{1}{2}$

- $\sum_{n=1}^{\infty} \frac{4^{-n} 9^{-n+1}}{2^{-n} + 3^{-n+1}}$
- 30 $4\frac{1}{2}$

- $egin{aligned} egin{aligned} eg$
- $\bigcirc \frac{1}{2}$ $\bigcirc 1$ $\bigcirc \frac{3}{2}$ $\bigcirc 2$

- $\sum_{n=1}^{\infty} \left(\frac{n^2 + 3n + 3}{n^2 + 3n + 2} a \right) = b$ 일 때, a + b의 값은?
 - $\bigcirc \frac{1}{2}$ $\bigcirc 1$ $\bigcirc \frac{3}{2}$ $\bigcirc 2$

- $\mathbf{3}$ 두 수열 $\{a_n\}$, $\{b_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty}a_n=2$ 이고 모든 자연수 n에 대하여 $\sum\limits_{k=1}^{n}\left(b_k+\frac{k^2}{n^3}\right)=\frac{n}{n+1}$ 일 때, $\sum\limits_{n=1}^{\infty}(a_n+3b_n)$ 의 값은?
 - \bigcirc 1
- ③ 3
- 4
- (5) 5

- 등비수열 $\{a_n\}$ 에 대하여 $\lim_{n\to\infty}\frac{a_n}{3^n+4^{n-1}}=2$ 일 때, $\sum_{n=1}^\infty\frac{1}{a_n}$ 의 값은?

- ① $\frac{1}{3}$ ② $\frac{2}{3}$ ③ 1 ④ $\frac{4}{3}$ ⑤ $\frac{5}{3}$

 $a_2=-rac{1}{2}$ 인 수열 $\{a_n\}$ 에 대하여 급수 $\sum\limits_{n=1}^\infty a_n$ 의 제n항까지의 부분합을 S_n 이라 하자. 급수 $\sum\limits_{n=1}^\infty a_n$ 이 수렴하고 모든 자연수 n에 대하여 $S_{n+1}+S_n=2n+a_1-\frac{pn^2+1}{n+1}$ 일 때, $p \times \sum_{n=1}^{\infty} a_n$ 의 값을 구하시오. (단, p는 상수이다.)

수열 $\{a_n\}$ 에 대하여 $\sum\limits_{n=1}^{\infty}(a_n-3)=5$ 일 때, $\lim\limits_{n\to\infty}\left(a_n-3n+\sum\limits_{k=1}^{n}a_k\right)$ 의 값을 구하시오.

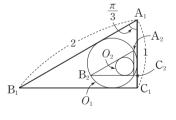
수열 $\{a_n\}$ 에 대하여 $\sum\limits_{n=1}^\infty a_n=3$ 이고 $\sum\limits_{n=1}^\infty (a_n+2a_{n+1})=1$ 일 때, a_1 의 값은?

① 1

- ③ 3
- 4
- (5) 5

[21011-0042]

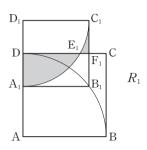
그림과 같이 $\overline{A_1B_1}{=}2$, $\overline{C_1A_1}{=}1$ 이고 $\angle A_1{=}\frac{\pi}{3}$ 인 삼각형 $A_1B_1C_1$ 에 내접 하는 원 O_1 을 그린다. 원 O_1 에 내접하고 각 변이 삼각형 $A_1B_1C_1$ 의 세 변에 평행한 삼각형 $A_2B_2C_2$ 를 그리고, 이 삼각형 $A_2B_2C_2$ 에 내접하는 원 O_2 를 그린다. 이와 같은 과정을 계속하여 n번째 얻은 원을 O_n 이라 하자. 원 O_n 의 B_1 둘레의 길이를 l_n 이라 할 때, $\sum_{n=1}^{\infty} l_n$ 의 값은?

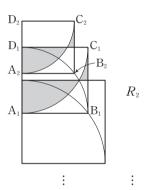


- $2\sqrt{3}\pi$ $3\frac{4\sqrt{3}}{3}\pi$ $4\frac{5\sqrt{3}}{3}\pi$
- $\bigcirc 2\sqrt{3}\pi$

기본적인 급수의 합을 구하는 문제. 급수와 수열의 극한의 관계를 묻는 문제. 등비급수의 합을 이용하여 도형의 길이나 넓이를 구하는 문제 등이 출제되고 있다.

그림과 같이 한 변의 길이가 5인 정사각형 ABCD에 중심이 A이고 중심각 의 크기가 90°인 부채꼴 ABD를 그린다. 선분 AD를 3:2로 내분하는 점을 A. 점 A.을 지나고 선분 AB에 평행한 직선이 호 BD와 만나는 점을 B.이 라 하자, 선분 A,B,을 한 변으로 하고 선분 DC와 만나도록 정사각형 A₁B₁C₁D₁을 그린 후, 중심이 D₁이고 중심각의 크기가 90°인 부채꼴 D,A,C,을 그린다. 선분 DC가 호 A,C, 선분 B,C,과 만나는 점을 각각 E₁. F,이라 하고, 두 선분 DA, DE,과 호 A,E,로 둘러싸인 부분과 두 선분 E_1F_1 , F_1C_1 과 호 E_1C_1 로 둘러싸인 부분인 모양의 도형에 색칠하여 얻 은 그림을 R_1 이라 하자. 그림 R_1 에서 정사각형 $A_1B_1C_1D_1$ 에 중심이 A_1 이고 중심각의 크기가 90°인 부채꼴 A,B,D,을 그린다. 선분 A,D,을 3:2로 내 분하는 점을 A_0 . 점 A_0 를 지나고 선분 A_1B_1 에 평행한 직선이 호 B_1D_1 과 만 나는 점을 B_2 라 하자. 선분 A_2B_2 를 한 변으로 하고 선분 D_1C_1 과 만나도록 정사각형 $A_2B_2C_2D_2$ 를 그린 후, 그림 R_1 을 얻은 것과 같은 방법으로 정사각 형 $A_2B_2C_2D_2$ 에 ightharpoonup 모양의 도형을 그리고 색칠하여 얻은 그림을 R_2 라 하 자. 이와 같은 과정을 계속하여 n번째 얻은 그림 R_n 에 색칠되어 있는 부분의 넓이를 S_n 이라 할 때, $\lim S_n$ 의 값은? [4점]





①
$$\frac{50}{3} \left(3 - \sqrt{3} + \frac{\pi}{6} \right)$$

①
$$\frac{50}{3} \left(3 - \sqrt{3} + \frac{\pi}{6} \right)$$
 ② $\frac{100}{9} \left(3 - \sqrt{3} + \frac{\pi}{3} \right)$

$$3\frac{50}{3}\left(2-\sqrt{3}+\frac{\pi}{3}\right)$$

$$4 \frac{100}{9} \left(3 - \sqrt{3} + \frac{\pi}{6} \right)$$

$$4 \frac{100}{9} \left(3 - \sqrt{3} + \frac{\pi}{6}\right)$$
 $5 \frac{100}{9} \left(2 - \sqrt{3} + \frac{\pi}{3}\right)$

2020학년도 대수능

(출제 의도) 삼각형의 넓이. 부채꼴의 넓이 등과 닮음비를 이용하여 등비급수의 합을 구할 수 있는지를 묻는 문제이다.

플이 그림 R_1 에서 $\overline{AA_1}=3$. $\overline{AB_1}=5$ 이므로 $\overline{A_1B_1}=4$. 이때 $\overline{D_1E_1}=4$. $\overline{D_1D}=2$ 이므로 $\angle DD_1E_1=60^\circ$, $\angle C_1D_1E_1=30^\circ$ $S_1 = \{(\forall \exists D_1 A_1 E_1) - (\Delta D_1 D E_1) \} + \{(\Box D_1 D F_1 C_1) - (\Delta D_1 D E_1) - (\forall \exists D_1 E_1 C_1) \}$ $=\left(\frac{8}{3}\pi-2\sqrt{3}\right)+\left(8-2\sqrt{3}-\frac{4}{3}\pi\right)=8-4\sqrt{3}+\frac{4}{3}\pi$

한편, 정사각형 $A_nB_nC_nD_n$ 과 정사각형 $A_{n+1}B_{n+1}C_{n+1}D_{n+1}$ 의 한 변의 길이의 비는 5:4이므로 넓이의 비는

25 : 16이다. 따라서 $\lim_{n\to\infty} S_n = \frac{8-4\sqrt{3}+\frac{4}{3}\pi}{1-\frac{16}{2}} = \frac{25}{9}\left(8-4\sqrt{3}+\frac{4}{3}\pi\right) = \frac{100}{9}\left(2-\sqrt{3}+\frac{\pi}{3}\right)$ **3** (5)

여러 가지 함수의 미분

1. 지수함수와 로그함수의 극한(1)

- (1) 지수함수의 극한
 - ① a > 1일 때, $\lim a^x = \infty$

② 0 < a < 1일 때, $\lim a^x = 0$

- (2) 로그함수의 극한
 - ① a > 1일 때, $\lim_{x \to \infty} \log_a x = \infty$, $\lim_{x \to 0.1} \log_a x = -\infty$
 - ② 0 < a < 1일 때, $\lim_{a \to a} \log_a x = -\infty$, $\lim_{a \to a} \log_a x = \infty$
- 참고 (1) 지수함수 $y=a^x$ 은 구간 $(-\infty,\infty)$ 에서 연속이므로 실수 k에 대하여 $\lim_{x\to b}a^x=a^k$ 이다.
 - (2) 로그함수 $y=\log_a x$ 는 구간 $(0,\infty)$ 에서 연속이므로 양수 k에 대하여 $\lim_{x\to b}\log_a x=\log_a k$ 이다.

2. 지수함수와 로그함수의 극한(2)

(1) 무리수 e의 뜻

x의 값이 0에 한없이 가까워질 때. $(1+x)^{\frac{1}{x}}$ 의 값은 일정한 값에 수렴한다는 것이 알려져 있는데 그 극한값을 e로 나타낸다. 즉, $\lim_{x\to 0}(1+x)^{\frac{1}{x}}=e$ 이다. 이때 수 e는 무리수이며 그 값은 $e=2.71828\cdots$ 임이 알려져 있다.

(2) 자연로그의 뜻

무리수 e를 믿으로 하는 로그 $\log_e x$ 를 자연로그라 하고, 기호로 $\ln x$ 와 같이 나타낸다.

(3) 지수함수와 로그함수의 극한

①
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$
, $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$

②
$$\lim_{x\to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$$
, $\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$ (단, $a > 0$, $a \ne 1$)

 $\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x) = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln\{\lim_{x \to 0} (1+x)^{\frac{1}{x}}\} = \ln e = 1$

또 위에서 $e^x-1=t$ 로 놓으면 $x=\ln{(1+t)}$ 이고, $x\to 0$ 일 때 $t\to 0$ 이므로

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{t \to 0} \frac{t}{\ln(1 + t)} = \lim_{t \to 0} \frac{1}{\frac{\ln(1 + t)}{t}} = \frac{1}{\lim_{t \to 0} \frac{\ln(1 + t)}{t}} = \frac{1}{1} = 1$$

 $\mathbb{E}\lim_{x\to 0}\frac{a^{x}\!-\!1}{x}\!=\!\lim_{x\to 0}\frac{(e^{\ln a})^{x}\!-\!1}{x}\!=\!\lim_{x\to 0}\frac{e^{x\ln a}\!-\!1}{x}$

이때 $x \ln a = t$ 로 놓으면 $x = \frac{t}{\ln a}$ 이고, $x \to 0$ 일 때 $t \to 0$ 이므로

$$\lim_{x \to 0} \frac{e^{x \ln a} - 1}{x} = \lim_{t \to 0} \frac{e^{t} - 1}{\frac{t}{\ln a}} = \ln a \times \lim_{t \to 0} \frac{e^{t} - 1}{t} = \ln a \times 1 = \ln a$$

| 참고| 함수 $y=e^x$ 과 함수 $y=\ln x$ 는 서로 역함수의 관계이므로 두 함수의 그래프는 직선 y=x에 대하여 대칭이다.

지수함수와 로그함수의 극한

실수 x와 자연수 n에 대하여 등식 $\lim_{x\to\infty}\frac{2^x}{2^{x+1}+1}=\lim_{n\to\infty}\frac{2^{n+1}}{a\times 2^n+3}$ 이 성립할 때, 상수 a의 값은?

- (4) 2
- (5) 4

풀이 전략

좌변은 $\lim_{x\to\infty}2^x=\infty$ 이므로 분모, 분자를 2^x 으로 나누어 함수의 극한의 성질을 이용할 수 있도록 식을 변형한다.

또 우변도 좌변과 마찬가지로 수열의 극한의 성질을 이용할 수 있도록 식을 변형한다.

좌변의 분모와 분자를 2^x 으로 나눈 후 극한값을 구하면

$$\lim_{x \to \infty} \frac{2^{x}}{2^{x+1} + 1} = \lim_{x \to \infty} \frac{1}{2 + \left(\frac{1}{2}\right)^{x}} = \frac{\lim_{x \to \infty} 1}{\lim_{x \to \infty} 2 + \lim_{x \to \infty} \left(\frac{1}{2}\right)^{x}} = \frac{1}{2}$$

또 우변의 분모와 분자를 2"으로 나눈 후 극한값을 구하면

$$\lim_{n \to \infty} \frac{2^{n+1}}{a \times 2^n + 3} = \lim_{n \to \infty} \frac{2}{a + 3 \times \left(\frac{1}{2}\right)^n} = \frac{\lim_{n \to \infty} 2}{\lim_{n \to \infty} a + 3 \times \lim_{n \to \infty} \left(\frac{1}{2}\right)^n} = \frac{2}{a}$$

따라서 $\frac{1}{2} = \frac{2}{a}$ 이므로

$$a=4$$

3 (5)

정답과 **풀이** 16쪽

[21011-0043]

- $\lim_{x\to 0} \frac{e^{4x}-1}{x^2+2x}$ 의 값은?
 - ① $\frac{1}{4}$ ② $\frac{1}{2}$
- ③ 1
- (4) 2
- (5) 4

유제 $2 \lim_{x\to 0} \frac{\ln(x^2+3x+1)}{3x^2+6x}$ 의 값은?

- ① $\frac{1}{3}$ ② $\frac{1}{2}$
- ③ 1
- (4) 2
- (5) 3

3. 지수학수와 로그학수의 미분

(1)
$$y=e^x$$
이면 $y'=e^x$

$$y=\ln x$$
이면 $y'=\frac{1}{x}$

(2)
$$y=a^{x}(a>0, a\neq 1)$$
이면 $y'=a^{x}\ln a$

$$y = \log_a x \ (a > 0, \ a \neq 1)$$
이면 $y' = \frac{1}{x \ln a}$

설명 $(1) y = e^x$ 에 대하여 지수함수의 극한을 이용하면

$$y' = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} \frac{e^x(e^h - 1)}{h}$$

$$= e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x \times 1 = e^x$$

 $y=\ln x$ 에 대하여

$$y' = \lim_{h \to 0} \frac{\ln{(x+h)} - \ln{x}}{h} = \lim_{h \to 0} \frac{\ln{\left(\frac{x+h}{x}\right)}}{h} = \lim_{h \to 0} \frac{1}{h} \ln{\left(1 + \frac{h}{x}\right)}$$

이때 $\frac{h}{r}$ =t로 놓으면 $h \rightarrow 0$ 일 때 $t \rightarrow 0$ 이므로 로그함수의 극한에 의하여

$$y' = \lim_{h \to 0} \frac{1}{h} \ln \left(1 + \frac{h}{x} \right) = \frac{1}{x} \lim_{t \to 0} \frac{\ln (1+t)}{t} = \frac{1}{x} \times 1 = \frac{1}{x}$$

(2) $y=q^x$ 에 대하여 지수함수의 극하음 이용하면

$$y' = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = \lim_{h \to 0} \frac{a^x (a^h - 1)}{h} = a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$
$$= a^x \times \ln a = a^x \ln a$$

 $y=\log_a x$ 에 대하여

$$y' = (\log_a x)' = \left(\frac{\ln x}{\ln a}\right)' = \frac{1}{\ln a} \times (\ln x)'$$
$$= \frac{1}{\ln a} \times \frac{1}{x} = \frac{1}{x \ln a}$$

 \bigcirc (1) $y=e^x+x$ 에 대하여

$$y' = (e^x)' + (x)' = e^x + 1$$

(2) $y=xe^x$ 에 대하여

$$y' = (x)'e^x + x(e^x)' = e^x + xe^x$$

(3) $y=\ln x+x$ 에 대하여

$$y' = (\ln x)' + (x)' = \frac{1}{r} + 1$$

(4) y=x ln x에 대하여

$$y' = (x)' \ln x + x(\ln x)' = \ln x + x \times \frac{1}{x} = \ln x + 1$$

 \bigcirc (1) $y=2^x$ 에 대하여 $y'=2^x \ln 2$

$$(2)$$
 $y=\log_2 x$ 에 대하여 $y'=\frac{1}{x \ln 2}$

기수함수와 로그함수의 미분

함수 $f(x)=e^x$ 에 대하여 등식 $\{f'(1)\}^2=\lim_{h\to 0}\frac{f(a^2+a+h)-f(a^2+a)}{h}$ 를 만족시키는 모든 상수 a의 값의 곱은?

- $\bigcirc 1 2$
- ③ 0
- **4** 1
- (5) 2

풀이 (전략) 도함수를 이용하여 미분계수를 구한 후 지수에 미지수를 포함한 방정식을 풀어 상수 a의 값을 구한다.

풀이

 $f(x) = e^x$ 에서 $f'(x) = e^x$ 이므로

$$\{f'(1)\}^2 = (e^1)^2 = e^2$$

.....

미분계수의 정의를 이용하면

$$\lim_{h \to 0} \frac{f(a^2 + a + h) - f(a^2 + a)}{h} = f'(a^2 + a) = e^{a^2 + a} \qquad \dots \dots \bigcirc$$

① ①에서 $\rho^{a^2+a} = \rho^2$ 이므로

$$a^2+a=2$$
, $a^2+a-2=0$

$$(a-1)(a+2)=0$$

따라서 a=1 또는 a=-2이므로 모든 a의 값의 곱은

$$1 \times (-2) = -2$$

(1)

정답과 풀이 16쪽

[21011-0045]

- 함수 $f(x) = \ln \sqrt{x}$ 에 대하여 등식 $\sum\limits_{k=1}^{10} \frac{1}{f'(k)} = \lim\limits_{h \to 0} \frac{f(a+h) f(a-3h)}{h}$ 를 만족시키는 상수 a의 값은?

- ① $\frac{1}{275}$ ② $\frac{1}{220}$ ③ $\frac{1}{165}$ ④ $\frac{1}{110}$ ⑤ $\frac{1}{55}$

유제

함수 $f(x) = \ln 2 \times \ln x \times \log_4 x + (\ln x)^2$ 에 대하여 f'(e)의 값은?

- ① $\frac{2}{\rho}$ ② $\frac{3}{\rho}$ ③ e ④ 2e

- (5) 3e

4. 삼각함수의 덧셈정리

- (1) $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$ $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$
- (2) $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
- (3) $\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1 \tan\alpha \tan\beta}$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

설명 좌표평면에서 그림과 같이 두 각 α , $-\beta$ (α >0, β >0)이 나타내는 동경과 원 $x^2+y^2=1$ 이 만나는 점을 각각 A, B라 하자.

삼각형 AOB에서 $\angle AOB = \alpha + \beta$ 이므로 코사인법칙으로부터

$$\overline{AB} = \sqrt{\overline{OA}^2 + \overline{OB}^2 - 2\overline{OA} \times \overline{OB} \times \cos(\alpha + \beta)}$$

$$= \sqrt{2 - 2\cos(\alpha + \beta)} \qquad \dots \dots \bigcirc$$

한편, 점 A의 좌표는 $(\cos \alpha, \sin \alpha)$ 이고,

점 B의 좌표는 $(\cos(-\beta), \sin(-\beta))$, 즉 $(\cos \beta, -\sin \beta)$ 이므로

$$\overline{AB} = \sqrt{(\cos \alpha - \cos \beta)^2 + (\sin \alpha + \sin \beta)^2}$$

⑤과 ⓒ의 우변이 같으므로 두 우변을 제곱하면

$$2-2\cos(\alpha+\beta)=(\cos\alpha-\cos\beta)^2+(\sin\alpha+\sin\beta)^2$$

$$2-2\cos(\alpha+\beta) = (\cos^2\alpha + \sin^2\alpha) + (\cos^2\beta + \sin^2\beta) - 2(\cos\alpha\cos\beta - \sin\alpha\sin\beta)$$

따라서

$$\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

또 🗀을 이용하면 $\sin\theta = \cos\left(\frac{\pi}{2} - \theta\right)$ 이므로

$$\sin(\alpha+\beta) = \cos\left\{\frac{\pi}{2} - (\alpha+\beta)\right\} = \cos\left\{\left(\frac{\pi}{2} - \alpha\right) + (-\beta)\right\}$$

$$= \cos\left(\frac{\pi}{2} - \alpha\right)\cos(-\beta) - \sin\left(\frac{\pi}{2} - \alpha\right)\sin(-\beta)$$

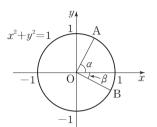
$$= \sin\alpha\cos\beta + \cos\alpha\sin\beta \qquad \cdots \qquad \textcircled{e}$$

또 🖘 ②을 이용하면

$$\tan(\alpha+\beta) = \frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} = \frac{\sin\alpha\cos\beta + \cos\alpha\sin\beta}{\cos\alpha\cos\beta - \sin\alpha\sin\beta} = \frac{\frac{\sin\alpha}{\cos\alpha} + \frac{\sin\beta}{\cos\beta}}{1 - \frac{\sin\alpha}{\cos\alpha} \times \frac{\sin\beta}{\cos\beta}} = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}$$

한편, $\alpha-\beta$ 에 대한 덧셈정리는 $\alpha+\beta$ 에 대한 덧셈정리에 β 대신 $-\beta$ 를 대입하면 얻을 수 있다.

$$(2)\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ}) = \cos 45^{\circ}\cos 30^{\circ} - \sin 45^{\circ}\sin 30^{\circ} = \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

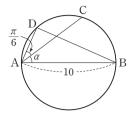


사각함수의 덧셈정리

길이가 10인 선분 AB를 지름으로 하는 원 위의 두 점 C, D에 대하여 $\angle CAD = \frac{\pi}{6}$ 이다.

 $\angle {\rm CAB} = lpha$ 라 할 때, $\cos \left(lpha - rac{\pi}{6}
ight) - rac{1}{2} \sin lpha = rac{2\sqrt{3}}{5}$ 이다. $\overline{
m AC} + \overline{
m BD}$ 의 값은?

(단, 선분 AC와 선분 BD는 한 점에서 만난다.)



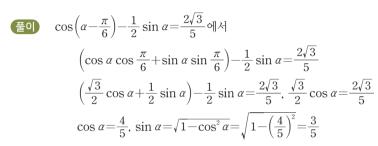
① $9\sqrt{3}$

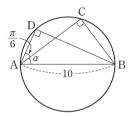
- ② $12+2\sqrt{3}$
- ③ $11 + 3\sqrt{3}$

 $4) 10\sqrt{3}$

(5) $12 + 3\sqrt{3}$

반원에 대한 원주각의 크기는 $\frac{\pi}{2}$ 임을 알고, 삼각함수의 덧셈정리를 이용한다. 풀이 전략

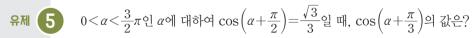




따라서 선분 BC를 그으면 $\angle ACB = \angle ADB = \frac{\pi}{2}$ 이므로

$$\overline{AC} + \overline{BD} = 10 \times \cos \alpha + 10 \times \sin \left(\alpha + \frac{\pi}{6}\right)$$
$$= 10 \times \frac{4}{5} + 10 \times \left(\frac{3}{5} \times \frac{\sqrt{3}}{2} + \frac{4}{5} \times \frac{1}{2}\right)$$
$$= 8 + (3\sqrt{3} + 4) = 12 + 3\sqrt{3}$$

정답과 풀이 16쪽



- ① $\frac{1-\sqrt{6}}{6}$ ② $\frac{2-\sqrt{6}}{6}$ ③ $\frac{3-\sqrt{6}}{6}$ ④ $\frac{1+\sqrt{6}}{6}$ ⑤ $\frac{2+\sqrt{6}}{6}$

[21011-0048]

- $\bigcirc \frac{1}{5}$ $\bigcirc \frac{1}{6}$ $\bigcirc \frac{1}{7}$ $\bigcirc \frac{1}{8}$

5. 삼각함수의 극한

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

설명 (i)
$$0 < x < \frac{\pi}{2}$$
일 때

그림과 같이 중심각의 크기가 x(라디안)이고 반지름의 길이가 1인 부채꼴 OAB에 대하여 점 A를 지나고 선분 OA에 수직인 직선과 선분 OB의 연장선이 만나는 점을 T라 하자. (삼각형 OAB의 넓이)<(부채꼴 OAB의 넓이)<(삼각형 OAT의 넓이)이므로

$$\begin{aligned} &\frac{1}{2} \times 1^2 \times \sin x < \frac{1}{2} \times 1^2 \times x < \frac{1}{2} \times 1 \times \tan x \\ &\frac{1}{2} \sin x < \frac{1}{2} x < \frac{1}{2} \tan x \end{aligned}$$

 $\sin x < x < \tan x$

 $\sin x > 0$ 이므로 각 변을 $\sin x$ 로 나누면

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

각 변의 역수를 취하면

$$\cos x < \frac{\sin x}{x} < 1$$

 $\lim_{x\to 0.1}\cos x=1$, $\lim_{x\to 0.1}1=1$ 이므로 함수의 극한의 대소 관계에 의하여

$$\lim_{x \to 0+} \frac{\sin x}{x} = 1 \quad \cdots \quad \bigcirc$$

$$(ii) - \frac{\pi}{2} < x < 0$$
일 때

$$\lim_{x \to 0^{-}} \frac{\sin x}{x} = \lim_{t \to 0^{+}} \frac{\sin (-t)}{-t}$$

$$= \lim_{t \to 0^{+}} \frac{\sin t}{t} = 1$$

$$\lim_{x \to 0} \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \times \frac{1}{\cos x} \right) = \lim_{x \to 0} \frac{\sin x}{x} \times \lim_{x \to 0} \frac{1}{\cos x} = 1 \times \frac{1}{1} = 1$$

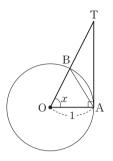
$$\lim_{x\to 0} \frac{\sin 2x}{x}$$
의 값을 구해 보자.

2x=t로 놓으면 $x \rightarrow 0$ 일 때 $t \rightarrow 0$ 이므로

$$\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{t \to 0} \frac{\sin t}{\frac{t}{2}} = 2 \lim_{t \to 0} \frac{\sin t}{t} = 2 \times 1 = 2$$

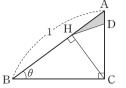
작고 극한값 $\lim_{x\to 0} \frac{\sin x}{x}$ 는 함수 $f(x) = \sin x$ 에 대하여 곡선 y = f(x) 위의 점 (0,0)에서의 접선의 기울기를 나타낸다. 즉,

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sin x}{x} = 1$$



사각함수의 극한

그림과 같이 $\overline{AB}=1$, $\angle C=\frac{\pi}{2}$ 인 직각삼각형 ABC의 꼭짓점 C에서 선분 AB에 내린 수 선의 발을 H라 하자. $\overline{CH} = \overline{CD}$ 가 되는 점 D를 선분 AC 위에 잡고 $\angle ABC = \theta$ 라 할 때, 삼각형 AHD의 넓이를 $S(\theta)$ 라 하자. $\lim_{\theta \to 0+} \frac{S(\theta)}{\theta^5}$ 의 값은?



- ① $\frac{1}{4}$
- $2\frac{1}{2}$
- ③ 1
- **4** 2
- (5) 4

풀이 전략 $S(\theta)$ 를 삼각함수로 나타낸 후 삼각함수의 극한을 구한다.

풀이 $\overline{BC} = \cos \theta$, $\overline{CA} = \sin \theta$ 이고 $\angle HCA = \theta$ 이므로 $\overline{AH} = \overline{CA} \sin \theta = \sin^2 \theta$ $\overline{AD} = \overline{CA} - \overline{CD} = \overline{CA} - \overline{CH} = \sin \theta - \overline{BC} \sin \theta = \sin \theta - \sin \theta \cos \theta = \sin \theta \times (1 - \cos \theta)$ 그러므로

$$\begin{split} S(\theta) = & \frac{1}{2} \times \overline{\text{AH}} \times \overline{\text{AD}} \times \sin\left(\frac{\pi}{2} - \theta\right) = & \frac{1}{2} \times \sin^3\theta \times (1 - \cos\theta) \times \sin\left(\frac{\pi}{2} - \theta\right) \\ = & \frac{1}{2} \times \sin^3\theta \times (1 - \cos\theta) \times \cos\theta \end{split}$$

따라서

$$\begin{split} \lim_{\theta \to 0+} \frac{S(\theta)}{\theta^5} &= \lim_{\theta \to 0+} \frac{\sin^3 \theta \times (1 - \cos \theta) \times \cos \theta}{2\theta^5} \\ &= \frac{1}{2} \times \lim_{\theta \to 0+} \left(\frac{\sin \theta}{\theta}\right)^3 \times \lim_{\theta \to 0+} \frac{1 - \cos \theta}{\theta^2} \times \lim_{\theta \to 0+} \cos \theta \\ &= \frac{1}{2} \times 1^3 \times \lim_{\theta \to 0+} \frac{(1 - \cos \theta)(1 + \cos \theta)}{\theta^2(1 + \cos \theta)} \times 1 \\ &= \frac{1}{2} \times \lim_{\theta \to 0+} \left(\frac{\sin \theta}{\theta}\right)^2 \times \lim_{\theta \to 0+} \frac{1}{1 + \cos \theta} = \frac{1}{2} \times 1^2 \times \frac{1}{2} = \frac{1}{4} \end{split}$$

1

 $\lim_{x\to 0} \frac{\sin(x^2+2x)}{(e^{2x}-1)(x+2)}$ 의 값은?

- ① $\frac{1}{4}$ ② $\frac{1}{2}$
- ③ 1
- 4 2
- (5) 4

[21011-0050]

0이 아닌 상수 a와 자연수 k가 등식 $\lim_{\theta \to 0} \frac{\tan^2 \theta - \sin^2 \theta}{\theta^k} = a$ 를 만족시킬 때, k + a의 값은?

- ① 3
- (2) **4**
- ③ 5
- (4) **6**
- (5) 7

6. 삼각함수의 미분

(1)
$$y = \sin x$$
이면 $y' = \cos x$

$$(2)$$
 $y = \cos x$ 이면 $y' = -\sin x$

설명
$$(1) f(x) = \sin x$$
라 하면

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{(\sin x \cos h + \cos x \sin h) - \sin x}{h}$$

$$= \cos x \times \lim_{h \to 0} \frac{\sin h}{h} - \sin x \times \lim_{h \to 0} \frac{1 - \cos h}{h}$$

$$= \cos x \times 1 - \sin x \times \lim_{h \to 0} \frac{(1 - \cos h)(1 + \cos h)}{h(1 + \cos h)}$$

$$= \cos x - \sin x \times \lim_{h \to 0} \frac{\sin h}{h} \times \lim_{h \to 0} \frac{\sin h}{1 + \cos h}$$

$$= \cos x - \sin x \times 1 \times 0$$

$$= \cos x$$

$$(2) f(x) = \cos x$$
라 하면

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{(\cos x \cos h - \sin x \sin h) - \cos x}{h}$$

$$= -\cos x \times \lim_{h \to 0} \frac{1 - \cos h}{h} - \sin x \times \lim_{h \to 0} \frac{\sin h}{h}$$

$$= -\cos x \times 0 - \sin x \times 1$$

$$= -\sin x$$

예
$$(1)$$
 $y = \sin x + \cos x$ 에 대하여

$$y' = (\sin x)' + (\cos x)' = \cos x - \sin x$$

$$(2)$$
 $y = \sin x \times \cos x$ 에 대하여

$$y' = (\sin x)' \times \cos x + \sin x \times (\cos x)' = \cos^2 x - \sin^2 x$$

$$\mathbf{G}$$
 (1) $f(x) = \sin x$ 에 대하여 $f'(x) = \cos x$ 이므로 $x = \frac{\pi}{3}$ 에서의 미분계수는

$$f'\left(\frac{\pi}{3}\right) = \cos\frac{\pi}{3} = \frac{1}{2}$$

$$(2) f(x) = \cos x$$
에 대하여 $f'(x) = -\sin x$ 이므로 $x = \frac{\pi}{3}$ 에서의 미분계수는

$$f'\left(\frac{\pi}{3}\right) = -\sin\frac{\pi}{3} = -\frac{\sqrt{3}}{2}$$

삼각함수의 미분

 $0 < a < 2\pi$ 인 상수 a와 함수 $f(x) = \cos x$ 에 대하여 등식 $f'(a) = \lim_{h \to 0} \frac{f(a+h)\sin{(a+h)} - f(a)\sin{a}}{h}$ 를 만 족시키는 서로 다른 모든 a의 값의 합은?

- $3\frac{17}{6}\pi$ $4\frac{19}{6}\pi$ $5\frac{7}{2}\pi$

풀이 전략 미분계수는 도함수를 이용하여 구하고. 삼각함수가 포함된 방정식을 풀어 상수 a의 값을 구한다.

 $f(x) = \cos x$ 에서 $f'(x) = -\sin x$ 이므로 $f'(a) = -\sin a$

또 $g(x)=f(x)\sin x=\cos x\sin x$ 라 하면

$$\lim_{h \to 0} \frac{f(a+h)\sin{(a+h)} - f(a)\sin{a}}{h} = \lim_{h \to 0} \frac{g(a+h) - g(a)}{h} = g'(a)$$

이때 $g'(x) = (\cos x)' \times \sin x + \cos x \times (\sin x)' = -\sin^2 x + \cos^2 x$ 이므로

$$g'(a) = -\sin^2 a + \cos^2 a = 1 - 2\sin^2 a$$

①. □에서

 $-\sin a = 1 - 2\sin^2 a$, $2\sin^2 a - \sin a - 1 = 0$, $(2\sin a + 1)(\sin a - 1) = 0$, $\sin a = -\frac{1}{2}$ $\pm \pm \sin a = 1$

따라서 $0 < a < 2\pi$ 에서 $a = \frac{7}{6}\pi$, $a = \frac{11}{6}\pi$, $a = \frac{\pi}{2}$ 이므로 서로 다른 모든 a의 값의 합은

$$\frac{7}{6}\pi + \frac{11}{6}\pi + \frac{\pi}{2} = \frac{7}{2}\pi$$

(5)

[21011-0051]

함수 $f(x) = \cos x + \sin x$ 에 대하여 $f'(\frac{\pi}{2}) + \lim_{x \to \pi} \frac{f(x) + 1}{x - \pi}$ 의 값은?

- $\bigcirc -2$ $\bigcirc -1$
- ③ 0
- (5) 2

[21011-0052]

함수 $f(x)=x\cos x$ 에 대하여 두 상수 a,b가 $\lim_{x\to \frac{\pi}{4}}\frac{f(x)-a}{x-\frac{\pi}{4}}=b$ 를 만족시킨다. a+b의 값은?

- ① $\frac{\sqrt{2}}{4}$ ② $\frac{\sqrt{2}}{2}$ ③ $\sqrt{2}$ ④ $2\sqrt{2}$ ⑤ $4\sqrt{2}$

- $\lim_{x \to 0} \frac{e^{2x} + e^{-x} 2}{2x}$ 의 값은?

 - ① -1 ② $-\frac{1}{2}$
- ③ 0
- $4\frac{1}{2}$
- ⑤ 1

- 함수 f(x)에 대하여 $\lim_{x\to 0} \frac{f(x)}{\ln{(1+3x)}} = 2$ 일 때, $\lim_{x\to 0} \frac{f(x)}{e^{2x}-1}$ 의 값은?
 - ① 1
- (2) **2**
- ③ 3
- 4
- (5) **5**

[21011-0055]

- 함수 $f(x)=(x-1)^2e^x$ 에 대하여 f'(2)의 값은?

 - ① e^2 ② $2e^2$
- (3) $3e^{2}$
- $4e^{2}$
- (5) $5e^2$

 $\lim_{x\to 1} \frac{x^2 \ln x}{x-1}$ 의 값을 구하시오.

[21011-0057]

- 자연수 n에 대하여 곡선 $y=\ln x$ 와 직선 y=n이 만나는 점을 \mathbf{P}_n 이라 하자. 곡선 $y=\ln x$ 위의 점 \mathbf{P}_n 에서의 5 접선의 기울기를 f(n)이라 할 때, $\sum\limits_{n=1}^{\infty}f(n)$ 의 값은?

 - ① $\frac{1}{e+2}$ ② $\frac{1}{e+1}$ ③ $\frac{1}{e}$ ④ $\frac{1}{e-1}$ ⑤ $\frac{1}{e-2}$

- $\frac{\pi}{2} < \alpha < \pi, \ 0 < \beta < \frac{\pi}{2}$ 인 α , β 에 대하여 $\sin \alpha = \frac{1}{3}$, $\sin \beta = \frac{\sqrt{6}}{3}$ 일 때, $\sin (\alpha \beta)$ 의 값은?

 - ① $\frac{\sqrt{3}}{9}$ ② $\frac{2\sqrt{3}}{9}$ ③ $\frac{\sqrt{3}}{3}$ ④ $\frac{4\sqrt{3}}{9}$ ⑤ $\frac{5\sqrt{3}}{9}$

7 두 직선 y=mx, $y=\frac{1}{3}x$ 가 이루는 예각의 크기가 $\frac{\pi}{4}$ 일 때, 상수 m의 값을 구하시오. $\left(\text{단, }m>\frac{1}{3}\right)$

- $\lim_{x \to \frac{\pi}{2}} \frac{\sin(2x \pi)}{x \frac{\pi}{2}}$ 의 값은?

 - ① -2 ② $-\frac{1}{2}$
- ③ 0
- $4\frac{1}{2}$
- (5) 2

- - ① $\frac{1}{2}$ ② 1
- $3\frac{3}{2}$
- 4) 2

10 곡선 $y=a\sin x\cos x+b$ 위의 점 $\left(\frac{\pi}{3},\,\frac{1}{2}\right)$ 에서의 접선의 기울기가 $\sqrt{3}$ 일 때, 두 상수 $a,\,b$ 에 대하여 a^2+b^2 의 값을 구하시오.

Level 2 기본 연습

[21011-0063] 두 상수 $a, b \ (b>0)$ 에 대하여 함수 $f(x) = \begin{cases} \frac{1}{3}(e^{2x}-a) \ (x<0) \\ \ln{(1+bx)} \ (x\geq0) \end{cases}$ 이 x=0에서 미분가능할 때,

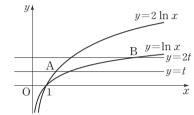
 $(a+b) \times f'(0)$ 의 값은?

- ① $\frac{2}{9}$ ② $\frac{4}{9}$ ③ $\frac{2}{3}$ ④ $\frac{8}{9}$

- $^{(5)}\frac{10}{9}$

[21011-0064]

2 그림과 같이 두 곡선 $y=\ln x$, $y=2\ln x$ 가 있다. 양수 t에 대하여 곡선 $y=2 \ln x$ 가 직선 y=t와 만나는 점을 A. 곡선 $y=\ln x$ 가 직선 y=2t와 만나는 점을 B라 하자. 직선 AB의 기울기를 f(t)라 할 때, $\lim_{t\to 0.1} f(t)$ 의



① $\frac{1}{3}$

값은?

- $2\frac{2}{3}$
- ③ 1

- $4\frac{3}{2}$
- (5) 3

함수 $f(x)=(2^x+a)\log_4 x$ 에 대하여 $\lim_{x\to 2}\frac{f(x)-4}{x^2-4}=b$ 일 때, 두 상수 a,b의 곱 ab의 값은?

①
$$\ln 2 + \frac{1}{\ln 2}$$

②
$$2 \ln 2 + \frac{2}{\ln 2}$$
 ③ $3 \ln 2 + \frac{3}{\ln 2}$

$$3 \ln 2 + \frac{3}{\ln 2}$$

$$4 \ln 2 + \frac{4}{\ln 2}$$

$$5 \ln 2 + \frac{5}{\ln 2}$$

[21011-0066]

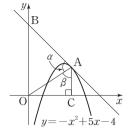
이차함수 f(x)에 대하여 함수 $g(x)=f(x)e^x$ 이 다음 조건을 만족시킨다.

$$(71) \lim_{x \to 2} \frac{g(x)}{x - 2} = 0$$

$$(\downarrow) \lim_{x\to 0} \frac{g(2x)-f(2x)}{x} = 12$$

f(6)의 값을 구하시오.

5 그림과 같이 곡선 $y = -x^2 + 5x - 4$ 에 접하고 기울기가 -1인 직선이 곡선과 접하는 점을 A. y축과 만나는 점을 B라 하고. 점 A에서 x축에 내린 수선의 발을 C라 하자. $\angle OAB = \alpha$. $\angle OAC = \beta$ 라 할 때, $tan(\alpha - \beta)$ 의 값은? (단, O는 원점이다.)



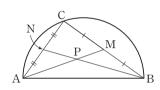
① $\frac{4}{17}$

 $2\frac{5}{17}$

- $4\frac{7}{17}$
- $^{\circ}\frac{8}{17}$

[21011-0068]

그림과 같이 선분 AB를 지름으로 하는 반원의 호 위의 점 C에 대하여 선분 BC 의 중점을 M, 선분 AC의 중점을 N, 선분 AM과 선분 BN의 교점을 P라 하자. $\tan(\angle CBN) = \frac{\sqrt{2}}{4}$ 일 때, $\sin(\angle APB)$ 의 값은?

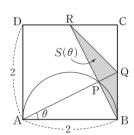


- ① $\frac{\sqrt{3}}{3}$ ② $\frac{7\sqrt{3}}{18}$ ③ $\frac{4\sqrt{3}}{9}$ ④ $\frac{\sqrt{3}}{2}$

$$(5) \frac{5\sqrt{3}}{9}$$

[21011-0069]

그림과 같이 한 변의 길이가 2인 정사각형 ABCD의 내부에 선분 AB를 지름으로 하는 반원이 있다. 반원의 호 위의 점 P에 대하여 직선 AP가 선분 BC와 만나는 점 을 Q, 직선 BP가 선분 CD와 만나는 점을 R라 하고, ∠PAB= θ 라 하자. 삼각형 BQR의 넓이를 $S(\theta)$ 라 할 때, $\lim_{\theta \to 0+} \frac{S(\theta)}{\theta^2}$ 의 값은? $\left($ 단, $0 < \theta < \frac{\pi}{4} \right)$



- $\bigcirc \frac{1}{4}$
- $2\frac{1}{2}$

③ 1

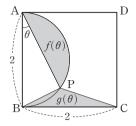
(4) 2

두 상수 a, b의 합 a+b의 값을 구하시오.

Level 3 실력 완성

[21011-0071]

그림과 같이 한 변의 길이가 2인 정사각형 ABCD의 내부에 선분 AB를 지름으로 하는 반원이 있다. 반원의 호 위의 점 P에 대하여 ∠PAB=θ라 하고. 선분 AP와 호 AP로 둘러싸인 도형의 넓이를 $f(\theta)$, 삼각형 PBC의 넓이를 $g(\theta)$ 라 할 때,

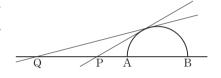


$$\lim_{\theta \to 0+} \frac{g(\theta)}{\theta \times \left\{ \frac{\pi}{2} - f(\theta) \right\}}$$
의 값은? (단, $0 < \theta < \frac{\pi}{4}$)

- 1 1
- $2\frac{17}{16}$ $3\frac{9}{8}$
- $4\frac{19}{16}$

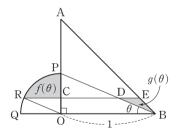
[21011-0072]

2 그림과 같이 선분 AB를 지름으로 하는 반원이 있다. 선분 AB를 1:3으로 외분하는 점을 P. 선분 AB를 3:5로 외분하는 점을 Q라 하자. 점 P를 지나고 반원에 접하는 직선과 점 Q를 지나고 반원에 접 하는 직선이 이루는 예각의 크기를 θ 라 할 때, $\sin \theta = \frac{\sqrt{m} - \sqrt{n}}{8}$ 이다. 두 자연수 m. n에 대하여 m+n의 값을 구하시오.



[21011-0073]

3 그림과 같이 $\overline{OA} = \overline{OB} = 1$, $\angle AOB = \frac{\pi}{2}$ 인 직각이등변삼각형 AOB의 변 OA 위의 점 P에 대하여 중심이 O이고 반지름의 길이가 \overline{OP} 인 원이 선분 OB의 연장선과 만나는 점을 Q라 하자. 점 O를 지나고 직선 PB와 평행인 직선이 호 PQ와 만나는 점을 R라 하고, 점 R를 지나고 직선 OB와 평행인 직선이 세 선분 OA. PB. AB와 만나는 점을 각각 C. D. E라 하자. $\angle OBP = \theta$ 라 하고, 호 PR와 선분 RC, 선분 PC로 둘러싸인 도형의 넓이 를 $f(\theta)$, 삼각형 BED의 넓이를 $g(\theta)$ 라 할 때, $\lim_{\theta \to 0^+} \frac{\theta \times f(\theta)}{g(\theta)}$ 의 값은?



- ① $\frac{\pi}{8}$
- $2\frac{\pi}{4}$ $3\frac{3\pi}{8}$ $4\frac{\pi}{2}$

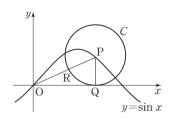
○ 대표 기출 문제

8

=

도형에서 사인법칙, 코사인법칙, 삼각함수의 덧셈정리를 이용하는 문제가 출제된다. 삼각함수의 극한에서는 도형의 성질을 이용하여 식을 구한 후 극한값을 구하는 문제가 출제되고 있다.

좌표평면에서 곡선 $y = \sin x$ 위의 점 $P(t, \sin t)$ $(0 < t < \pi)$ 를 중심으로 하고 x축에 접하는 원을 C라 하 자. 원 C가 x축에 접하는 점을 Q, 선분 OP와 만나는 점을 R라 하자. $\lim_{t\to 0+} \frac{\overline{OQ}}{\overline{OR}} = a + b\sqrt{2}$ 일 때, a+b의 값을 구하시오. (단, O는 원점이고, a, b는 정수이다.) [3점]



2020학년도 대수능

(출제 의도) 원의 성질을 활용하여 삼각함수의 극한값을 구할 수 있는지를 묻는 문제이다.

풀이 점 P의 좌표가 $(t, \sin t)$ $(0 < t < \pi)$ 이므로 점 Q의 좌표는 (t, 0)이고,

$$\overline{OQ} = t$$

또
$$\overline{PR} = \overline{PQ} = \sin t$$
이므로

$$\overline{OR} = \overline{OP} - \overline{PR} = \sqrt{t^2 + \sin^2 t} - \sin t$$

따라서

$$\begin{split} \lim_{t \to 0+} \frac{\overline{\text{OQ}}}{\overline{\text{OR}}} &= \lim_{t \to 0+} \frac{t}{\sqrt{t^2 + \sin^2 t} - \sin t} = \lim_{t \to 0+} \frac{t(\sqrt{t^2 + \sin^2 t} + \sin t)}{(t^2 + \sin^2 t) - \sin^2 t} \\ &= \lim_{t \to 0+} \frac{\sqrt{t^2 + \sin^2 t} + \sin t}{t} \\ &= \lim_{t \to 0+} \left\{ \sqrt{1 + \left(\frac{\sin t}{t}\right)^2} + \frac{\sin t}{t} \right\} \\ &= \sqrt{1 + 1^2} + 1 \\ &= 1 + \sqrt{2} \end{split}$$

즉,
$$a=1$$
, $b=1$ 이므로 $a+b=2$

2

여러 가지 미분법

1. 함수의 몫의 미분법

함수 f(x) ($f(x) \neq 0$)이 미부가능학 때

$$y = \frac{1}{f(x)}$$
이면 $y' = -\frac{f'(x)}{\{f(x)\}^2}$

참고 두 함수 $f(x)(f(x) \neq 0), g(x)$ 가 미분가능할 때,

함수
$$y=\frac{g(x)}{f(x)}$$
이면 $y'=\frac{g'(x)f(x)-g(x)f'(x)}{\{f(x)\}^2}$

에 ①
$$y = \frac{1}{x+1}$$
이면 $y' = -\frac{(x+1)'}{(x+1)^2} = -\frac{1}{(x+1)^2}$

②
$$y = \frac{x}{x^2 + 1}$$
이면 $y' = \frac{(x)' \times (x^2 + 1) - x \times (x^2 + 1)'}{(x^2 + 1)^2} = \frac{1 \times (x^2 + 1) - x \times 2x}{(x^2 + 1)^2} = \frac{1 - x^2}{(x^2 + 1)^2}$

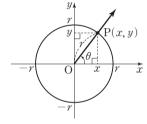
2. 몫의 미분법과 삼각함수

(1) $\sec \theta$. $\csc \theta$. $\cot \theta$ 의 정의

좌표평면의 원점 O에서 x축의 양의 방향을 시초선으로 하고. 일반각의 크기 θ 가 나타내는 동경 OP와 중심이 원점이고 반지름의 길이가 r인 원이 만나는 점을 P(x, y)라 할 때, $\sec \theta$, $\csc \theta$, $\cot \theta$ 를 다음과 같이 정의한다.

$$\sec \theta = \frac{r}{x} (x \neq 0)$$
, $\csc \theta = \frac{r}{y} (y \neq 0)$, $\cot \theta = \frac{x}{y} (y \neq 0)$

이때 $\sec \theta$. $\csc \theta$. $\cot \theta$ 를 각각 시컨트함수. 코시컨트함수. 코탄젠트함수라고 하다



()
$$\sec \theta = \frac{1}{\cos \theta}$$
, $\csc \theta = \frac{1}{\sin \theta}$, $\cot \theta = \frac{1}{\tan \theta}$

② $\sin^2\theta + \cos^2\theta = 1$ 의 양변을 $\cos^2\theta$ 로 나누어 정리하면 $1 + \tan^2\theta = \sec^2\theta$ 를 얻을 수 있다.

(2) 삼각함수의 도함수

몫의 미분법을 이용하여 여러 가지 삼각함수의 도함수를 구할 수 있다.

①
$$y = \tan x$$
이면 $y' = \sec^2 x$

②
$$y = \cot x$$
이면 $y' = -\csc^2 x$

③
$$y = \sec x$$
이면 $y' = \sec x \tan x$

④
$$y = \csc x$$
이면 $y' = -\csc x \cot x$

설명 ①
$$\tan x = \frac{\sin x}{\cos x}$$
이므로

$$y' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \times \cos x - \sin x \times (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

마찬가지 방법으로 몫의 미분법을 이용하여 ② ③ ④의 삼각함수의 도함수를 구할 수 있다.

데 ① $y=x \sec x$ 이면 $y'=(x)'\times \sec x+x\times (\sec x)'=\sec x+x \sec x \tan x=\sec x\times (1+x\tan x)$

②
$$y = \frac{\tan x}{x}$$
이면 $y' = \left(\frac{\tan x}{x}\right)' = \frac{(\tan x)' \times x - \tan x \times (x)'}{x^2} = \frac{x \sec^2 x - \tan x}{x^2}$

삼각함수의 도함수

함수 f(x) = $\tan x$ 에 대하여 $0 < x < 2\pi$ 에서 방정식 $f'(x) = \sqrt{3}f(x) + 1$ 의 모든 실근의 합은?

① $\frac{8}{3}\pi$

 $\bigcirc \frac{17}{6}\pi$

(3) 3π (4) $\frac{19}{6}\pi$ (5) $\frac{10}{3}\pi$

풀이 전략

 $(\tan x)' = \sec^2 x$. $1 + \tan^2 x = \sec^2 x$ 를 이용하여 삼각함수가 포함된 방정식을 푼다.

풀이 $f(x) = \tan x$ 에서 $f'(x) = \sec^2 x$

방정식 $f'(x) = \sqrt{3}f(x) + 1$ 에서

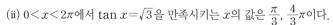
 $\sec^2 x = \sqrt{3} \tan x + 1$

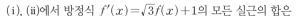
 $1 + \tan^2 x = \sqrt{3} \tan x + 1$

 $\tan^2 x - \sqrt{3} \tan x = 0$

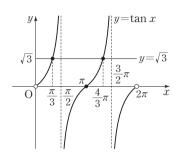
 $\tan x \times (\tan x - \sqrt{3}) = 0$

 $\tan x = 0$ 또는 $\tan x = \sqrt{3}$





$$\frac{\pi}{3} + \pi + \frac{4}{3}\pi = \frac{8}{3}\pi$$



1

정답과 **풀이** 25쪽

함수 $f(x) = \frac{x-1}{x^2+1}$ 에 대하여 곡선 y = f(x) 위의 점 (1, 0)에서의 접선의 기울기는?

① -1 ② $-\frac{1}{2}$ ③ 0 ④ $\frac{1}{2}$

⑤ 1

할수 $f(x) = \frac{x}{\tan x + \cot x}$ 가 $\lim_{x \to \frac{\pi}{4}} \frac{f(x) - a}{x - \frac{\pi}{4}} = b$ 를 만족시킬 때, $\frac{b}{a}$ 의 값은? (단, a, b는 상수이다.)

① $\frac{4}{\pi}$ ② $\frac{8}{\pi}$ ③ $\frac{12}{\pi}$ ④ $\frac{16}{\pi}$ ⑤ $\frac{20}{\pi}$

3. 합성함수의 미분법

두 함수 y=f(u). u=g(x)가 미분가능할 때, 합성함수 y=f(g(x))도 미분가능하며 그 도함수는

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} + \frac{dy}{dx} = f'(g(x))g'(x)$$

[설명] 함수 u=g(x)에서 x의 증분 Δx 에 대한 u의 증분을 Δu 라 하고, 함수 y=f(u)에서 u의 증분 Δu 에 대한 u의 증분을 Δu 라 하면

$$\frac{\Delta y}{\Delta x} = \frac{\Delta y}{\Delta u} \times \frac{\Delta u}{\Delta x} \left(\Delta u \neq 0 \right)$$

이고, 두 함수 y=f(u), u=g(x)가 미분가능하므로

$$\lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} = \frac{dy}{du}, \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = \frac{du}{dx}$$

이때 미분가능한 함수 u=g(x)는 연속이므로 $\Delta u=g(x+\Delta x)-g(x)$ 에서 $\Delta x\to 0$ 이면 $\Delta u\to 0$ 이다.

$$\text{ which } \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta u} \times \frac{\Delta u}{\Delta x} \right) = \lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} \times \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = \frac{dy}{du} \times \frac{du}{dx}$$

또한
$$\frac{dy}{du}$$
= $f'(u)$ = $f'(g(x))$ 이고, $\frac{du}{dx}$ = $g'(x)$ 이므로

$$y' = \{f(g(x))\}' = f'(g(x))g'(x)$$

참고 함수 f(x)가 미분가능할 때, 함수 $y = \{f(x)\}^n (n)$ 은 정수 있는 미분가능하고 그 도함수는 $y' = n\{f(x)\}^{n-1}f'(x)$

4. 로그함수의 도함수

미분가능한 함수 f(x)에 대하여 f(x)>0일 때, $y=\ln f(x)$ 이면 $y'=\frac{f'(x)}{f(x)}$

설명 u=f(x)라 하면 $y=\ln u$ 이고, $\frac{dy}{du}=\frac{1}{u}, \frac{du}{dr}=f'(x)$ 이므로

$$y' = \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{1}{u} \times f'(x) = \frac{1}{f(x)} \times f'(x) = \frac{f'(x)}{f(x)}$$

에 ① $y = \ln(x^2+1)$ 이면 $y' = \frac{(x^2+1)'}{x^2+1} = \frac{2x}{x^2+1}$

② $y=\ln\sin x$ $(\sin x>0)$ 이면 $y'=\frac{(\sin x)'}{\sin x}=\frac{\cos x}{\sin x}$

5. 함수 $y=x^{\alpha}(\alpha = 24, x>0)$ 의 도함수

 α 가 실수일 때, $y=x^{\alpha}(x>0)$ 이면 $y'=\alpha x^{\alpha-1}$

설명 $x^a = (e^{\ln x})^a = e^{a \ln x}$ 이므로 $y' = (e^{a \ln x})' = e^{a \ln x} (a \ln x)' = e^{a \ln x} \times \frac{a}{x} = x^a \times \frac{a}{x} = ax^{a-1}$

합고 미분가능한 함수 f(x)에 대하여 $\{e^{f(x)}\}'=e^{f(x)}\times f'(x)$

예 $y=x^{\sqrt{2}}$ 이면 $y'=(x^{\sqrt{2}})'=\sqrt{2}x^{\sqrt{2}-1}$

2 합성함수의 미분법

최고차항의 계수가 1인 이차함수 f(x)에 대하여 함수 $g(x)=f(e^{2x})$ 이 g(0)=g'(0)=2를 만족시킨다. f(2)의 값은?

- ① 1
- (2) **2**
- ③ 3
- (4) **4**
- (5) 5

풀이 $(\overline{\mathbf{CG}})$ $f(x)=x^2+ax+b$ (a,b)는 상수)라 하고, 합성함수의 미분법을 이용하여 조건을 만족시키는 함수 f(x)를 구한다.

풀이 $f(x) = x^2 + ax + b$ (a, b는 상수)라 하면 두 함수 f(x), e^{2x} 이 실수 전체의 집합에서 미분가능하므로 함수 g(x)도 실수 전체의 집합에서 미분가능하다.

g(0)=2에서 f(1)=2이므로

1+a+b=2

 $a+b=1 \qquad \cdots \bigcirc$

하펶.

f'(x) = 2x + a, $g'(x) = f'(e^{2x}) \times (e^{2x})' = f'(e^{2x}) \times 2e^{2x}$

이고, $q'(0)=f'(1)\times 2=2$ 에서 f'(1)=1이므로

2+a=1. a=-1

a=-1을 \bigcirc 에 대입하면

-1+b=1, b=2

따라서 $f(x)=x^2-x+2$ 이므로

 $f(2)=2^2-2+2=4$

(4)

정답과 풀이 25쪽

[21011-0076]

유제

함수 $f(x) = x \ln(1+x^2)$ 에 대하여 f'(1)의 값은?

- ① 1

- ② $1+\ln 2$ ③ $1+\ln 3$ ④ $1+2\ln 2$ ⑤ $1+\ln 5$

[21011-0077]

유제

함수 $f(x) = \sin ax$ 가 $\lim_{x \to 0} \frac{f'(x) - a}{x^2} = -4$ 를 만족시킬 때, $f(\frac{\pi}{3})$ 의 값은? (단, a는 상수이다.)

- $(1) \frac{\sqrt{3}}{2}$ $(2) \frac{1}{2}$ (3) 0 $(4) \frac{1}{2}$ $(5) \frac{\sqrt{3}}{2}$

6. 매개변수로 나타낸 함수의 미분법

(1) 두 변수 x, y 사이의 관계를 변수 t를 매개로 하여

$$x=f(t), y=g(t)$$

로 나타낼 때 변수 t를 매개변수라 하고, 이 함수를 매개변수로 나타낸 함수라고 한다.

에 함수 $x = \cos t$. $y = \sin t$ ($0 \le t < 2\pi$)는 원의 방정식 $x^2 + y^2 = 1$ 을 매개변수로 나타낸 함수이다.

(2) 매개변수 t로 나타내 함수

$$x=f(t), y=g(t)$$

에서 두 함수 f(t), g(t)가 미분가능하고 $f'(t) \neq 0$ 일 때.

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$

설명 매개변수 t의 증분 Δt 에 대한 x의 증분을 Δx , y의 증분을 Δy 라 하면

$$\frac{\Delta y}{\Delta x} = \frac{\frac{\Delta y}{\Delta t}}{\frac{\Delta x}{\Delta t}}$$

이때 x=f(t)는 t에 대하여 미분가능하고, $f'(t) \neq 0$ 이므로 $\Delta x \rightarrow 0$ 이면 $\Delta t \rightarrow 0$ 이다.

따라서
$$\frac{dy}{dx} = \lim_{dx \to 0} \frac{\Delta y}{\Delta x} = \lim_{dt \to 0} \frac{\frac{\Delta y}{\Delta t}}{\frac{\Delta x}{\Delta t}} = \frac{\lim_{dt \to 0} \frac{\Delta y}{\Delta t}}{\lim_{dt \to 0} \frac{\Delta x}{\Delta t}} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$$

- 참고 함수 x=f(t)가 미분가능하고 $f'(t) \neq 0$ 일 때, 역함수가 존재하며 역함수는 연속임이 알려져 있다. 따라서 $\Delta x \rightarrow 0$ 일 때 $\Delta t \rightarrow 0$ 이다.
- 에 ① 매개변수 t로 나타낸 함수 $x=\cos t$, $y=\sin t$ 에서 $\frac{dy}{dx}$ 를 구해 보자.

$$\frac{dx}{dt} = -\sin t, \frac{dy}{dt} = \cos t$$
이므로

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = -\frac{\cos t}{\sin t}$$
(단, $\sin t \neq 0$)

② 매개변수 t (t>0)으로 나타낸 함수 $x=t-\frac{1}{t}$, $y=t+\frac{1}{t}$ 의 t=2에서의 미분계수를 구해 보자.

$$x=t-rac{1}{t}$$
에서 $rac{dx}{dt}=1+rac{1}{t^2}$, $y=t+rac{1}{t}$ 에서 $rac{dy}{dt}=1-rac{1}{t^2}$ 이므로

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{1 - \frac{1}{t^2}}{1 + \frac{1}{t^2}} = \frac{t^2 - 1}{t^2 + 1} \qquad \dots \dots \oplus$$

따라서 주어진 함수의 t=2에서의 미분계수는 \bigcirc 에 t=2를 대입한 값과 같으므로

$$\frac{2^2-1}{2^2+1} = \frac{3}{5}$$

예제 3 매개변수로 나타낸 함수의 미분법

때개변수 $t\left(0 < t < \frac{\pi}{4}\right)$ 로 나타낸 곡선 $x = \tan 2t$, $y = \sin 2t$ 위의 점 (a,b)에서의 접선의 기울기가 $\frac{1}{8}$ 일 때, ab의 값은? (단, a, b는 상수이다.)

- ① $\frac{1}{2}$
- 2 1
- $3\frac{3}{2}$
- 4 2
- $(5) \frac{5}{2}$

풀이 전략 합성함수의 미분법을 이용하여 $\frac{dx}{dt}$, $\frac{dy}{dt}$ 를 구하고, $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ 임을 이용하여 삼각함수가 포함된 방정식을 푼다.

풀이 $x=\tan 2t$ 에서 $\frac{dx}{dt}=\sec^2 2t\times (2t)'=2\sec^2 2t,\ y=\sin 2t$ 에서 $\frac{dy}{dt}=\cos 2t\times (2t)'=2\cos 2t$ 이므로

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2\cos 2t}{2\sec^2 2t} = \frac{\cos 2t}{\sec^2 2t} = \cos^3 2t$$

$$\frac{dy}{dx} = \frac{1}{8}$$
, 즉 $\cos^3 2t = \frac{1}{8}$ 에서

$$8\cos^3 2t - 1 = 0$$
, $(2\cos 2t - 1)(4\cos^2 2t + 2\cos 2t + 1) = 0$

이때
$$4\cos^2 2t + 2\cos 2t + 1 = 4\left(\cos 2t + \frac{1}{4}\right)^2 + \frac{3}{4} > 0$$
이므로

$$2\cos 2t - 1 = 0$$
, $\cos 2t = \frac{1}{2}$

$$0 < t < \frac{\pi}{4}$$
에서 $0 < 2t < \frac{\pi}{2}$ 이므로 $2t = \frac{\pi}{3}$

따라서
$$t=\frac{\pi}{6}$$
이므로 $ab=\tan\frac{\pi}{3}\times\sin\frac{\pi}{3}=\sqrt{3}\times\frac{\sqrt{3}}{2}=\frac{3}{2}$

3

정답과 풀이 26쪽

[21011-0078]

- 유제 $\mathbf{5}$ 매개변수 t로 나타낸 곡선 $x=1-e^{-t}$, $y=e^{2t}+1$ 에 대하여 $t=\ln 2$ 에 대응하는 점에서의 접선의 기울 기는?
 - ① 10
- ② 12
- ③ 14
- ④ 16
- ⑤ 18

[21011-0079]

- 유제 6 매개변수 t (t>0)으로 나타낸 곡선 $x=\ln \sqrt{t}$, $y=\frac{1}{2}t^2-at$ 에 대하여 t=3에 대응하는 점에서의 접선의 기울기가 6일 때, 상수 a의 값은?
 - 1 1
- 2 2
- 3 3
- (4) **4**
- (5) **5**

7. 음한수의 미분법

(1) 음함수

방정식 f(x, y) = 0에서 x와 y의 값의 범위를 적당히 정하면 y는 x에 대한 함수가 된다.

이와 같은 의미에서 x에 대한 함수 y가

$$f(x, y) = 0$$

의 꼴로 주어졌을 때. 이 방정식을 y의 x에 대한 음함수 표현이라고 한다.

설명 원의 방정식 $x^2 + y^2 = 1$ 에서 y = x에 대한 함수가 아니다.

하지만 $y \ge 0$ 일 때 $y = \sqrt{1-x^2}$. $y \le 0$ 일 때 $y = -\sqrt{1-x^2}$ 은 각각 닫힌구간 [-1, 1]에서 정의되는 함수가 된다.

(2) 음합수의 미뷰

x의 함수 y가 음함수 f(x,y)=0의 꼴로 주어질 때. y를 x의 함수로 보고 양변의 각 항을 x에 대하여 미분하 여 $\frac{dy}{dx}$ 를 구하는 것을 음함수의 미분법이라고 한다.

 \square ① 방정식 $x^2+y^2-1=0$ 에서 y=x의 함수로 보고 양변의 각 항을 x에 대하여 미분하면

$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) + \frac{d}{dx}(-1) = 0$$
 (*

합성함수의 미분법에 의하여

$$\frac{d}{dx}(y^2) = \frac{d}{dy}(y^2) \times \frac{dy}{dx} = 2y\frac{dy}{dx} \qquad \cdots$$

⑤을 (*)에 대입하면

$$2x+2y\frac{dy}{dx}=0, y\frac{dy}{dx}=-x$$

따라서
$$\frac{dy}{dx} = -\frac{x}{y}$$
 (단, $y \neq 0$)

② 곡선 $y^3 - xy + 1 = 0$ 위의 점 (2, 1)에서의 접선의 기울기를 구해 보자.

y를 x의 함수로 보고 양변의 각 항을 x에 대하여 미분하면

$$\frac{d}{dr}(y^3) - \frac{d}{dr}(xy) + \frac{d}{dr}(1) = 0 \qquad \cdots (*)$$

합성함수의 미분법과 곱의 미분법에 의하여

$$\frac{d}{dx}(y^3) = \frac{d}{dy}(y^3) \times \frac{dy}{dx} = 3y^2 \frac{dy}{dx} \qquad \dots \qquad \bigcirc$$

$$\frac{d}{dx}(xy) = \frac{d}{dx}(x)y + x\frac{d}{dx}(y) = y + x\frac{dy}{dx} \qquad \cdots \cdots \bigcirc$$

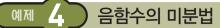
①. ①을 (*)에 대입하면

$$3y^2 \frac{dy}{dx} - \left(y + x \frac{dy}{dx}\right) = 0, (3y^2 - x) \frac{dy}{dx} = y$$

 $\frac{dy}{dx} = \frac{y}{3y^2 - x}$ (단, $3y^2 - x \neq 0$) ©

따라서 점 (2, 1)에서의 접선의 기울기는 ©에 x=2, y=1을 대입한 값과 같으므로

$$\frac{1}{3 \times 1^2 - 2} = 1$$



곡선 $xe^y + ye^x = 2e$ 위의 점 (1, 1)에서의 접선의 기울기는?

- (1) -2
- (2) -1
- 4 1
- (5)2

풀이 전략 y를 x의 함수로 보고, 양변을 x에 대하여 미분하여 $\frac{dy}{dr}$ 를 구한다.

풀이 곱의 미분법과 합성함수의 미분법에 의하여

$$\frac{d}{dx}(xe^y) = e^y + x\frac{d}{dx}(e^y) = e^y + x\frac{d}{dy}(e^y) \times \frac{dy}{dx} = e^y + xe^y \frac{dy}{dx}$$

$$\frac{d}{dx}(ye^x) = \frac{d}{dy}(y) \times \frac{dy}{dx} \times e^x + y \frac{d}{dx}(e^x) = e^x \frac{dy}{dx} + ye^x$$

$$\left(e^{y}+xe^{y}\frac{dy}{dx}\right)+\left(e^{x}\frac{dy}{dx}+ye^{x}\right)=0$$

$$(e^x + xe^y) \frac{dy}{dx} = -(ye^x + e^y)$$

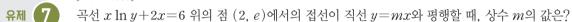
$$\frac{dy}{dx} = -\frac{ye^x + e^y}{e^x + re^y}$$
(단, $e^x + xe^y \neq 0$) \bigcirc

따라서 곡선 위의 점 (1,1)에서의 접선의 기울기는 \bigcirc 에 x=1,y=1을 대입한 값과 같으므로

$$-\frac{1 \times e + e}{e + 1 \times e} = -\frac{2e}{2e} = -1$$

2

[21011-0080]



- ① -3e ② $-\frac{5}{2}e$ ③ -2e ④ $-\frac{3}{2}e$ ⑤ -e

- 곡선 $\cos{(x+y)}+\sin{(x-y)}=1$ 위의 점 $\left(\pi,\frac{\pi}{2}\right)$ 에서의 접선의 기울기는? 유제

 - ① -1 ② $-\frac{1}{2}$ ③ 0 ④ $\frac{1}{2}$
- **(5)** 1

8. 역함수의 미분법

미분가능한 함수 f(x)의 역함수 y=g(x)가 존재하고 이 역함수가 미분가능할 때.

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \left(\text{단, } \frac{dx}{dy} \neq 0 \right) \text{또는 } g'(x) = \frac{1}{f'(g(x))} \left(\text{단, } f'(g(x)) \neq 0 \right)$$

설명 y=g(x)에서 x=f(y)이므로 이 식의 양변을 x에 대하여 미분하면

$$1 = \frac{d}{dx}f(y) = \frac{d}{dy}f(y) \times \frac{dy}{dx} = f'(y)\frac{dy}{dx} = \frac{dx}{dy} \times \frac{dy}{dx}$$

따라서
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \left(단, \frac{dx}{dy} \neq 0 \right)$$

여기서
$$\frac{dy}{dx} = g'(x), \frac{dx}{dy} = f'(y) = f'(g(x))$$
이므로

$$g'(x) = \frac{1}{f'(g(x))}$$
 (단, $f'(g(x)) \neq 0$)

참고 y=g(x)에서 역함수의 정의에 의하여

$$f(g(x)) = x$$

이 식의 양변을 x에 대하여 미분하면

$$f'(g(x))g'(x)=1$$

따라서
$$g'(x) = \frac{1}{f'(g(x))} = \frac{1}{f'(y)}$$
 (단, $f'(y) \neq 0$)

즉,
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \left($$
단, $\frac{dx}{dy} \neq 0 \right)$

에 함수 $f(x) = (x-1)^3$ 의 역함수를 g(x)라 할 때, g'(1)의 값을 구해 보자.

$$f(2)=1$$
이므로 $g(1)=2$ 이고, $f'(x)=3(x-1)^2$

f(g(x))=x의 양변을 x에 대하여 미분하면

$$f'(g(x))g'(x)=1, g'(x)=\frac{1}{f'(g(x))}$$

따라서
$$g'(1) = \frac{1}{f'(g(1))} = \frac{1}{f'(2)} = \frac{1}{3}$$

9. 이계도함수

함수 f(x)의 도함수 f'(x)가 미분가능할 때, 함수 f'(x)의 도함수

$$\lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x}$$

를 함수 y=f(x)의 이계도함수라 하고, 기호로 y'', f''(x), $\frac{d^2y}{dx^2}$, $\frac{d^2}{dx^2}f(x)$ 와 같이 나타낸다.

에 함수 $y=x^2e^x$ 의 도함수는 $y'=2xe^x+x^2e^x=(x^2+2x)e^x$ 이므로 함수 $y=x^2e^x$ 의 이계도함수는 $y'' = (2x+2)e^x + (x^2+2x)e^x = (x^2+4x+2)e^x$

역함수의 미분법

함수 $f(x) = \ln(x^3 + x)$ (x > 0)의 역함수를 g(x)라 할 때, $g'(\ln 2)$ 의 값은?

- ① $\frac{1}{5}$
- $2\frac{1}{4}$ $3\frac{1}{3}$ $4\frac{1}{2}$
- (5) 1

① 미분가능한 함수 f(x)에 대하여 f(x)>0일 때, $y=\ln f(x)$ 이면 $y'=\frac{f'(x)}{f(x)}$ 풀이 전략

② $g(x)=f^{-1}(x)$ 이고 함수 g(x)가 미분가능할 때, $g'(x)=\dfrac{1}{f'(g(x))}$ (단, $f'(g(x))\neq 0)$

풀이 함수 g(x)는 함수 f(x)의 역함수이므로 f(g(x))=x

이 식의 양변을 x에 대하여 미분하면 f'(q(x))q'(x)=1 ····· \cap

 $f(x) = \ln(x^3 + x)$ 에서 $f(1) = \ln 2$ 이므로 $g(\ln 2) = 1$

또 $f(x) = \ln(x^3 + x)$ 에서

$$f'(x) = \frac{(x^3+x)'}{x^3+x} = \frac{3x^2+1}{x^3+x}$$

이고,
$$f'(1) = \frac{3+1}{1+1} = 2$$

 \bigcirc 에 $x=\ln 2$ 를 대입하면

 $f'(g(\ln 2))g'(\ln 2)=1, f'(1)g'(\ln 2)=1$

따라서 $g'(\ln 2) = \frac{1}{f'(1)} = \frac{1}{2}$

4

정답과 **풀이** 26쪽

[21011-0082]

함수 $f(x)=xe^{-x}$ 에 대하여 f''(1)의 값은?

- ① -e ② $-\frac{1}{e}$ ③ 0 ④ $\frac{1}{e}$
- (5) e

[21011-0083]

함수 $f(x)=2x-\cos x$ $(0 \le x \le \pi)$ 의 역함수를 g(x)라 할 때, 곡선 y=g(x)는 점 $\left(\pi, \frac{\pi}{2}\right)$ 를 지난 유제 (10) 다. $g'(\pi)$ 의 값은?

- ① $\frac{1}{5}$ ② $\frac{1}{4}$ ③ $\frac{1}{3}$ ④ $\frac{1}{2}$ ⑤ 1

함수 $f(x) = \frac{e^x - 1}{x^2}$ 에 대하여 f'(2)의 값은?

① $\frac{1}{5}$ ② $\frac{1}{4}$ ③ $\frac{1}{3}$

 $4\frac{1}{2}$

(5) **1**

곡선 $y=\sqrt[3]{x^2+4}$ 위의 점 (2, 2)에서의 접선의 기울기는?

① $\frac{1}{3}$ ② $\frac{2}{3}$

3 1

 $(4)\frac{4}{3}$

 $^{(5)}\frac{5}{3}$

[21011-0086]

3 매개변수 $t(0 < t < \pi)$ 로 나타낸 곡선 $x = e^t \cos t$, $y = e^t \sin t$ 에 대하여 t = a에 대응하는 점에서의 접선의 기울기가 -1일 때, 상수 a의 값은?

① $\frac{\pi}{6}$ ② $\frac{\pi}{3}$ ③ $\frac{\pi}{2}$ ④ $\frac{2}{3}\pi$ ⑤ $\frac{5}{6}\pi$

곡선 $y^3 - xy = a$ 위의 점 (b, 2)에서의 접선의 기울기가 $\frac{1}{3}$ 일 때, 두 상수 a, b의 합 a + b의 값은?

① 1

② 2

③ 3

4

(5) **5**

함수 $f(x)=2^{\ln x}+x$ (x>0)의 역함수를 g(x)라 할 때, 곡선 y=g(x)는 점 (2,1)을 지난다. g'(2)의 값은?

 $41+\ln 2$ $51+2\ln 2$

- $1 \qquad \text{함수 } f(x) = \frac{\ln \sqrt{x}}{x} \text{에 대하여 등식 } \lim_{h \to 0} \frac{f(\sqrt{e} + h) f(\sqrt{e})}{h} = kf(e) \\ \text{를 만족시키는 상수 } k \text{의 값은?}$
 - ① $\frac{1}{2}$
- ② 1 $3\frac{3}{2}$ ④ 2 $5\frac{5}{2}$

- 미분가능한 함수 f(x)가 $f(1)=\ln 2$, f'(1)=3을 만족시킨다. 함수 $g(x)=\frac{1}{1+\rho^x}$ 에 대하여 합성함수 $y = (g \circ f)(x)$ 의 그래프 위의 점 $(1, (g \circ f)(1))$ 에서의 접선의 기울기는?
 - ① $-\frac{10}{3}$ ② $-\frac{8}{3}$ ③ -2 ④ $-\frac{4}{3}$ ⑤ $-\frac{2}{3}$

- 매개변수 $t(0 < t < 2\pi)$ 로 나타낸 곡선 $x = t \sin t$, $y = 1 \cos t$ 에 대하여 $t = \alpha (0 < \alpha < \pi)$ 에 대응하는 점 P에서의 접선의 기울기를 p, $t=2\pi-\alpha$ 에 대응하는 점 Q에서의 접선의 기울기를 q라 하자. pq=-3일 때, 선분 PQ의 길이는?

 - ① $\frac{\pi}{3} + 1$ ② $\frac{2}{3}\pi + \sqrt{2}$ ③ $\pi + \sqrt{3}$ ④ $\frac{4}{3}\pi + \sqrt{3}$ ⑤ $\frac{5}{3}\pi + \sqrt{2}$

4 $0 < x < \frac{\pi}{2}$ 에서 정의된 함수 $f(x) = 4 \sin^2 x$ 의 역함수를 g(x)라 하자. $\lim_{h \to 0} \frac{g(1+h) - g(1-h)}{h} = \frac{q}{b} \sqrt{3}$ 일 때, p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.)

실수 전체의 집합에서 미분가능한 두 함수 f(x), g(x)가 다음 조건을 만족시킨다.

 $(71) \lim_{x \to \ln 2} \frac{f(x) - 5}{x - \ln 2} = 8$

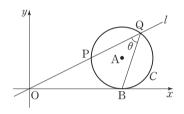
(나) 모든 실수 x에 대하여 $\sqrt{4+\{g(x)\}^2}=\frac{f(x)}{e^x}$ 이다.

h(x)=f(x)g(x)라 할 때, $h'(\ln 2)$ 의 값은? (단, 모든 양수 x에 대하여 g(x)>0이다.)

- ① $\frac{41}{2}$ ② $\frac{43}{2}$ ③ $\frac{45}{2}$ ④ $\frac{47}{2}$ ⑤ $\frac{49}{2}$

[21011-0094]

2 그림과 같이 점 A(3, 1)을 중심으로 하고 점 B에서 x축과 접하는 원 C가 있다 원점 O름 지나고 기울기가 양수인 직선 l이 원 C와 서로 다른 두 점에 서 만날 때, 원점에서 가까운 점을 P. 원점에서 먼 점을 Q라 하고 $\angle BQO = \theta$ 라 하자. 선분 OP의 길이를 $f(\theta)$ 라 할 때, $f'\left(\frac{\pi}{4}\right)$ 의 값은?



 $\left(\text{단, 직선 }l\text{의 기울기는 }\frac{3}{4}\text{보다 작다.}\right)$

- ① $\frac{\sqrt{5}}{5}$ ② $\frac{2\sqrt{5}}{5}$ ③ $\frac{3\sqrt{5}}{5}$ ④ $\frac{4\sqrt{5}}{5}$
- ⑤ √5

[21011-0095]

3 최고차항의 계수가 1인 삼차함수 f(x)가 다음 조건을 만족시킨다.

(7) f(1) = f'(1) = 0

(나) 함수 f(x)는 실수 전체의 집합에서 증가한다.

양수 t에 대하여 x>1에서 정의된 함수 $y=|\ln f(x)|$ 의 그래프와 직선 y=t가 만나는 서로 다른 두 점 사이 의 거리를 g(t)라 할 때. $g'(3 \ln 2)$ 의 값은?

- ① $\frac{1}{6}$ ② $\frac{1}{2}$ ③ $\frac{1}{2}$ ④ $\frac{2}{3}$

◎ 대표 기출 문제

출제 경향

E

==

20

8-1

함수의 몫의 미분법, 합성함수의 미분법, 역함수의 미분법을 이용하여 다항함수, 삼각함수, 지수함수, 로그함수의 도함수를 구하거나 매개변수 또는 음함수로 나타낸 곡선 위의 점에서의 접선의 기울기를 구하는 문제가 출제된다.

열린구간 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 에서 정의된 함수

$$f(x) = \ln\left(\frac{\sec x + \tan x}{a}\right)$$

의 역함수를 g(x)라 하자. $\lim_{x\to -2}\frac{g(x)}{x+2}=b$ 일 때, 두 상수 a,b의 곱 ab의 값은? (단, a>0) [4점]

$$\textcircled{1} \frac{e^2}{4}$$

$$\bigcirc \frac{e^2}{2}$$

$$\odot e^2$$

(4)
$$2e^2$$

(5)
$$4e^2$$

2021학년도 대수능 9월 모의평가

(출제 의도) 합성함수의 미분법과 역함수의 미분법을 이용하여 극한값을 구할 수 있는지를 묻는 문제이다.

불이 $\lim_{x\to -2}\frac{g(x)}{x+2}=b$ 에서 $x\to -2$ 일 때 (분모) $\to 0$ 이고 극한값이 존재하므로 $\lim_{x\to -2}g(x)=0$

함수 f(x)가 열린구간 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ 에서 연속이므로 함수 f(x)의 역함수 g(x)도 x=-2를 포함한 구간에서 연속이다.

그러므로 $g(-2) = \lim_{x \to -2} g(x) = 0$ 이고, f(0) = -2

이때 $f(0) = \ln\left(\frac{\sec 0 + \tan 0}{a}\right) = \ln\frac{1}{a} = -\ln a$ 이므로

 $-\ln a = -2$, $\ln a = 2$, $a = e^2$

또 미분계수의 정의에 의하여

$$b = \lim_{x \to -2} \frac{g(x)}{x+2} = \lim_{x \to -2} \frac{g(x) - g(-2)}{x - (-2)} = g'(-2)$$

한편, $f(x) = \ln\left(\frac{\sec x + \tan x}{e^2}\right) = \ln\left(\sec x + \tan x\right) - 2$ 에서

$$f'(x) = \frac{(\sec x + \tan x)'}{\sec x + \tan x} = \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} = \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} = \sec x$$

또 f(g(x))=x이므로 이 식의 양변을 x에 대하여 미분하면

$$f'(g(x))g'(x)=1$$

위 식의 양변에 x=-2를 대입하면

$$f'(g(-2)) \times g'(-2) = 1$$
, $f'(0) \times g'(-2) = 1$

이때 $f'(0) = \sec 0 = 1$. g'(-2) = b이므로

$$1 \times b = 1, b = 1$$

따라서 $a=e^2$ b=1이므로 $ab=e^2\times 1=e^2$

(3)

도함수의 활용

1. 접선의 방정식

미분가능한 함수 f(x)에 대하여 곡선 y=f(x) 위의 점 P(a, f(a))에서의 접선의 방정식은

$$y-f(a)=f'(a)(x-a)$$

 \mathbf{M} 곡선 $y = \frac{1}{r+1}$ 위의 점 (0, 1)에서의 접선의 방정식을 구해 보자.

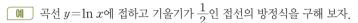
$$f(x) = \frac{1}{x+1}$$
이라 하면 $f'(x) = -\frac{1}{(x+1)^2}$

곡선 y=f(x) 위의 점 (0,1)에서의 접선의 기울기는 f'(0)=-1따라서 구하는 접선의 방정식은

$$y-1 = -1 \times (x-0)$$

array = -x+1

함수 y=f(x)가 미분가능할 때, 곡선 y=f(x)에 접하고 기울기가 m인 접선의 방정식을 구하는 방법을 다음의 예를



①
$$f(x) = \ln x$$
, 접점의 좌표를 $(t, \ln t)$ 로 놓는다.

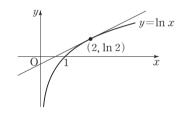
②
$$f'(x) = \frac{1}{x}$$
이고, 접선의 기울기가 $\frac{1}{2}$ 이므로 $f'(t) = \frac{1}{2}$ 인 t 의 값을

구하면
$$\frac{1}{t} = \frac{1}{2}$$
에서 $t=2$

③ 접점의 좌표는 (2, ln 2)이므로 구하는 접선의 방정식은

$$y - \ln 2 = \frac{1}{2}(x - 2)$$

$$\stackrel{=}{=}$$
, $y = \frac{1}{2}x - 1 + \ln 2$



참고2 곡선 위에 있지 않은 점에서 곡선에 그은 접선의 방정식

함수 y=f(x)가 미분가능할 때, 곡선 y=f(x) 위에 있지 않은 점 (x_1, y_1) 에서 곡선 y=f(x)에 그은 접선의 방정식 을 구하는 방법을 다음의 예를 통해 알아보자.

에 원점에서 곡선
$$y=e^x$$
에 그은 접선의 방정식을 구해 보자.

①
$$f(x)=e^x$$
, 접점의 좌표를 (t, e^t) 으로 놓는다.

②
$$f'(x)=e^x$$
이므로 접선의 기울기는 $f'(t)=e^t$ 이고, 이 접선의 방정식은 $y-e^t=e^t(x-t)$ ····· ①

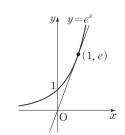
③ 위의 ②에서 구한 접선이 원점을 지나므로 \neg 에 x=0, y=0을 대입하면 $0-e^t=e^t(0-t), (t-1)e^t=0$

$$e^t > 0$$
이므로 $t-1 = 0$ 에서 $t=1$

④ t=1을 \bigcirc 에 대입하면 구하는 접선의 방정식은

$$y - e = e(x - 1)$$

즉. y=ex



접선의 방정식

점 A(0, -2)에서 곡선 $y=\ln |x|$ 에 그은 두 접선이 이루는 예각의 크기를 θ 라 할 때. $\tan \theta$ 의 값은?

①
$$\frac{e}{e^2+1}$$
 ② $\frac{2e}{e^2+1}$ ③ $\frac{e}{e^2-1}$ ④ $\frac{2e}{e^2-1}$

$$4 \frac{2e}{e^2-1}$$

풀이 전략 방정식을 구한다

곡선 $y=\ln |x|$ 가 y축에 대하여 대칭임을 이해하고 곡선 위의 점 $(t \ln t)$ (t>0)에서의 전선이 점 A를 지남을 이용하여 전선의

풀이
$$y = \ln|x|$$
에서 $y' = \frac{1}{x}$ 이고, $y = \ln|x| = \begin{cases} \ln(-x) & (x < 0) \\ \ln x & (x > 0) \end{cases}$

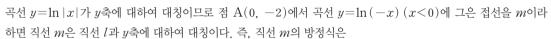
x>0일 때, 곡선 $y=\ln x$ 위의 점 $(t, \ln t)$ (t>0)에서의 접선을 l이라 하면 직선 1의 방정식은

$$y-\ln t = \frac{1}{t}(x-t)$$

직선 l이 점 A(0, -2)를 지나므로

$$-2-\ln t = \frac{1}{t}(0-t)$$
, $\ln t = -1$, $t = \frac{1}{e}$

 $t=\frac{1}{\rho}$ 을 \bigcirc 에 대입하여 정리하면 직선 l의 방정식은



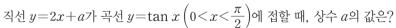
$$y = -ex - 2$$

이때 두 직선 l. m이 x축의 양의 방향과 이루는 각의 크기를 각각 α . β 라 하면 $\tan \alpha = e$, $\tan \beta = -e$ 이고, $\theta = \beta - \alpha$ 이므로 삼각함수의 덧셈정리에 의하여

$$\tan \theta = \tan (\beta - \alpha) = \frac{\tan \beta - \tan \alpha}{1 + \tan \beta \tan \alpha} = \frac{-e - e}{1 + (-e) \times e} = \frac{2e}{e^2 - 1}$$

(4)

[21011-0096]



$$\bigcirc -\pi$$

$$2 - \frac{\pi}{2}$$

$$3 - \frac{\pi}{4}$$

①
$$-\pi$$
 ② $-\frac{\pi}{2}$ ③ $-\frac{\pi}{4}$ ④ $1-\frac{\pi}{2}$ ⑤ $1-\frac{\pi}{4}$

⑤
$$1 - \frac{\pi}{4}$$

유제

[21011-0097]

곡선 $x^2 - xy + 2y^2 = 8$ 위의 점 (2, 2)에서의 접선과 원점 사이의 거리는?

$$2\frac{7\sqrt{10}}{10}$$

$$3\frac{4\sqrt{10}}{5}$$

$$4\frac{9\sqrt{10}}{10}$$

2. 미분가능한 함수의 증가와 감소. 극대와 극소의 판정

(1) 미분가능한 함수의 증가와 감소의 판정

함수 f(x)가 어떤 열린구간에서 미분가능하고. 이 구간의 모든 실수 x에 대하여

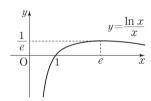
- ① f'(x) > 0이면 함수 f(x)는 이 구간에서 증가한다.
- ② f'(x) < 0이면 함수 f(x)는 이 구간에서 감소한다.
- (2) 미분가능한 함수의 극대와 극소의 판정
 - ① 미분가능한 함수 f(x)에 대하여 f'(a)=0이고 x=a의 좌우에서

 - \bigcirc f'(x)의 부호가 음에서 양으로 바뀌면 함수 f(x)는 x=a에서 극소이고, 극솟값은 f(a)이다.
 - ② 이계도함수가 존재하는 함수 f(x)에 대하여 f'(a)=0이고
 - $\bigcap f''(a) < 0$ 이면 함수 f(x)는 x = a에서 극대이고, 극댓값은 f(a)이다.
 - ① f''(a) > 0이면 함수 f(x)는 x = a에서 극소이고. 극솟값은 f(a)이다.
- \mathbf{M} x>0에서 함수 $f(x)=\frac{\ln x}{x}$ 의 증가와 감소를 알아보고, 극값을 구해 보자.

$$f'(x) = \frac{1 - \ln x}{x^2}$$
이므로 $f'(x) = 0$ 에서 $x = e$

x>0에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

\boldsymbol{x}	(0)	•••	e	•••
f'(x)		+	0	_
f(x)		1	$\frac{1}{e}$	\



0 < x < e에서 f'(x) > 0이므로 함수 f(x)는 0 < x < e에서 증가하고

x > e에서 f'(x) < 0이므로 함수 f(x)는 x > e에서 감소한다.

또 x=e의 좌우에서 f'(x)의 부호가 양에서 음으로 바뀌므로 함수 f(x)는 x=e에서 극대이고.

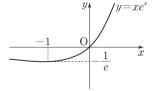
극댓값은
$$f(e) = \frac{\ln e}{e} = \frac{1}{e}$$
이다.

에 이계도함수를 이용하여 함수 $f(x) = xe^x$ 의 극값을 구해 보자.

$$f'(x) = (x+1)e^{x}$$
이므로 $f'(x) = 0$ 에서 $x = -1$

$$f''(x) = e^x + (x+1)e^x = (x+2)e^x$$
이므로 $f''(-1) = \frac{1}{e} > 0$

따라서 함수 f(x)는 x=-1에서 극소이고, 극솟값은 $f(-1)=-\frac{1}{\rho}$ 이다.

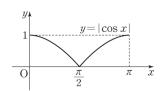


참고 함수 f(x)가 x=a에서 미분가능하지 않아도 x=a에서 극값을 가질 수 있다.

예를 들어, 함수 $f(x) = |\cos x|$ $(0 \le x \le \pi)$ 는 $x = \frac{\pi}{2}$ 에서 미분가능하지 않지만

열린구간 $\left(\frac{\pi}{4}, \frac{3}{4}\pi\right)$ 에 속하는 모든 실수 x에 대하여 $f(x) \geq f\left(\frac{\pi}{2}\right)$ 이므로

함수 f(x)는 $x=\frac{\pi}{2}$ 에서 극소이다.



예제 2 함수의 극대와 극소

함수 $f(x) = \ln\left(\frac{1}{2}x^2 + 1\right) - kx$ 가 x = 1에서 극값을 가질 때, 함수 f(x)의 극댓값은? (단, k는 상수이다.)

- ① $\ln 3-2$ ② $\ln 3-\frac{4}{3}$ ③ $\ln 3-\frac{2}{3}$ ④ $2 \ln 2-2$ ⑤ $2 \ln 2-\frac{4}{3}$

풀이 전략 미분가능한 함수가 극값을 가질 조건을 이해하고, f'(x) = 0인 x의 값의 좌우에서 함수 f(x)의 증가와 감소를 조사한다.

풀이 $f(x) = \ln\left(\frac{1}{2}x^2 + 1\right) - kx$ 에서

$$f'(x) = \frac{x}{\frac{1}{2}x^2 + 1} - k = \frac{2x}{x^2 + 2} - k$$

함수 f(x)가 x=1에서 극값을 가지므로 $f'(1)=\frac{2}{1+2}-k=0$ 에서 $k=\frac{2}{3}$

즉, 함수 $f(x) = \ln\left(\frac{1}{2}x^2 + 1\right) - \frac{2}{3}x$ 이고,

$$f'(x) = \frac{2x}{x^2+2} - \frac{2}{3} = \frac{-2(x^2-3x+2)}{3(x^2+2)} = \frac{-2(x-1)(x-2)}{3(x^2+2)}$$

f'(x) = 0에서 x = 1 또는 x = 1

함수 f(x)의 증가와 감소를 표로 나타내면 오른쪽과 같다. 따라서 함수 f(x)는 x=2에서 극대이고. 극댓값은

$$f(2) = \ln\left(\frac{1}{2} \times 2^2 + 1\right) - \frac{2}{3} \times 2 = \ln 3 - \frac{4}{3}$$

x		1		2	•••
f'(x)	_	0	+	0	_
f(x)	\	극소	1	극대	\

2

- 함수 $f(x) = (x^2 + ax + a)e^x$ 이 실수 전체의 집합에서 증가하도록 하는 상수 a의 값은? 유제
 - 1
- ② 2
- ③ 3
- (4) **4**
- (5) **5**

- 정의역이 $\{x \mid 0 < x < 2\}$ 인 함수 $f(x) = a \sin \pi x + \cos \pi x$ 가 $x = \frac{1}{3}$ 에서 극값을 가질 때, 함수 f(x)유제 의 극솟값은? (단. *a*는 상수이다.)

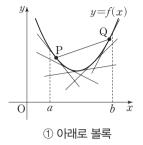
 - ① -2 ② $-\frac{3}{2}$ ③ -1 ④ $-\frac{1}{2}$

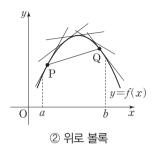
3. 곡선의 오목과 볼록

(1) 곡선의 오목과 볼록

닫힌구간 [a, b]에서 곡선 y=f(x) 위의 서로 다른 두 점 P. Q에 대하여 두 점 P. Q를 잇는 곡선 부분이

- ① 선분 PQ보다 항상 아래쪽에 있으면 곡선 y=f(x)는 그 구간에서 아래로 볼록 또는 위로 오목하다고 한다.
- ② 선분 PQ보다 항상 위쪽에 있으면 곡선 y=f(x)는 그 구간에서 위로 볼록 또는 아래로 오목하다 고 한다.





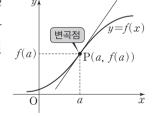
- (2) 이계도함수를 이용한 곡선의 오목과 볼록의 판정
 - 이계도함수가 존재하는 함수 f(x)가 어떤 구간의 모든 x에 대하여
 - ① f''(x) > 0이면 곡선 y = f(x)는 그 구간에서 아래로 볼록하다.
 - ② f''(x) < 0이면 곡선 y = f(x)는 그 구간에서 위로 볼록하다.

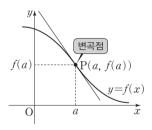
4. 곡선의 변곡점

(1) 곡선의 변곡점

곡선 y=f(x) 위의 점 P(a, f(a))에 대하여 x=a의 좌우에서 곡선의 모양이 아래로 볼록에서 위로 볼 록으로 변하거나 위로 볼록에서 아래로 볼록으로 변 할 때, 점 P를 곡선 y=f(x)의 변곡점이라고 한다.

(2) 이계도함수를 이용한 곡선의 변곡점의 판정 이계도함수가 존재하는 함수 f(x)에 대하여





f''(a) = 0이고, x = a의 좌우에서 f''(x)의 부호가 바뀌면 점 (a, f(a))는 곡선 y = f(x)의 변곡점이다.

5. 함수의 그래프

함수 y=f(x)의 그래프의 개형은 다음과 같은 사항을 고려하여 그린다.

- (1) 함수 f(x)의 정의역과 치역
- (2) 곡선 y=f(x)의 대칭성 (y축 대칭, 원점 대칭)과 주기
- (3) 곡선 y=f(x)와 좌표축이 만나는 점
- (4) 함수 f(x)의 증가와 감소, 극대와 극소
- (5) 곡선 y=f(x)의 오목과 볼록, 변곡점
- (6) $\lim f(x)$, $\lim f(x)$, 곡선 y=f(x)의 점근선

예제 3 곡선의 변곡점

함수 $f(x) = \frac{1+2\ln x}{x}$ 에 대하여 곡선 y = f(x)의 변곡점에서의 접선이 x축, y축과 만나는 점을 각각 A, B라 할 때, 삼각형 OAB의 넓이를 구하시오. (단, O는 원점이다.)

- 풀이 전략
- (1) 이계도함수가 존재하는 함수 f(x)에 대하여 함수 f''(a)=0이고, x=a의 좌우에서 f''(x)의 부호가 바뀌면 점 $(a,\ f(a))$ 는 곡선 y=f(x)의 변곡점이다.
- (2) 곡선 y=f(x) 위의 점 P(t, f(t))에서의 접선의 방정식은 y-f(t)=f'(t)(x-t)

풀이
$$f(x) = \frac{1+2\ln x}{r}$$
에서

$$f'(x) = \frac{\frac{2}{x} \times x - (1 + 2 \ln x)}{x^2} = \frac{1 - 2 \ln x}{x^2}$$

$$f''(x) = \frac{-\frac{2}{x} \times x^2 - (1 - 2 \ln x) \times 2x}{x^4} = \frac{4(\ln x - 1)}{x^3}$$

$$f''(x) = 0$$
에서 $x = e$

$$0 < x < e$$
에서 $f''(x) < 0$, $x > e$ 에서 $f''(x) > 0$ 이고 $f(e) = \frac{3}{e}$ 이므로 곡선 $y = f(x)$ 의 변곡점의 좌표는

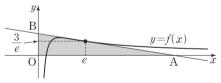
$$\left(e, \frac{3}{e}\right)$$
이다.

곡선
$$y=f(x)$$
 위의 점 $\left(e, \frac{3}{e}\right)$ 에서의 접선의 기울기는 $f'(e)=\frac{1-2}{e^2}=-\frac{1}{e^2}$ 이므로 접선의 방정식은

$$y - \frac{3}{e} = -\frac{1}{e^2}(x - e), y = -\frac{1}{e^2}x + \frac{4}{e}$$

따라서
$$A(4e, 0)$$
, $B\left(0, \frac{4}{e}\right)$ 이므로 삼각형 OAB의 넓이는

$$\frac{1}{2} \times 4e \times \frac{4}{e} = 8$$



B 8

정답과 **풀이** 33쪽

[21011-0100]

함수 $f(x)=2e^{2x}-e^{-x}+\frac{1}{2}$ 에 대하여 곡선 y=f(x)의 변곡점의 좌표가 (a,b)일 때, 두 수 a,b의 곱 ab의 값은?

- $\bigcirc 1 2 \ln 2$ $\bigcirc \ln 2$ $\bigcirc 3 \ 1$
- ④ ln 2
- ⑤ 2 ln 2

유제 6 함수 $f(x) = \frac{ax}{x^2+1} (x>0)$ 에 대하여 곡선 y=f(x)의 변곡점에서의 접선의 기울기가 $-\frac{1}{2}$ 일 때, 양수 a의 값을 구하시오.

6. 함수의 최댓값과 최솟값

(1) 함수의 최댓값과 최솟값

함수 f(x)가 닫힌구간 [a, b]에서 연속이면 최대·최소 정리에 의하여 함수 f(x)는 이 구간에서 반드시 최댓값과 최솟값을 갖는다.

(2) 함수의 최댓값과 최솟값 구하기

닫힌구간 [a, b]에서 연속인 함수 f(x)가 열린구간 (a, b)에서 극값을 가질 때, 극값, f(a), f(b) 중에서 가장 큰 값이 함수 f(x)의 최댓값. 가장 작은 값이 함수 f(x)의 최솟값이다.

[이 말한구간 [0, 2]에서 함수 $f(x) = xe^{-x}$ 의 최댓값과 최솟값을 구해 보자.

$$f'(x) = e^{-x} + x \times (-e^{-x})$$

= $(1-x)e^{-x}$

f'(x)=0에서 x=1이고 x=1의 좌우에서 f'(x)의 부호가 양에서 음으로 변하므

로 함수 f(x)는 x=1에서 극대이고, 극댓값은 $f(1)=\frac{1}{c}$ 이다.

또 $f(0)=0, \ f(2)=\frac{2}{\varrho^2}$ 이므로 닫힌구간 $[0,\,2]$ 에서 함수 f(x)의 최댓값은 $\frac{1}{\varrho}$, 최솟값은 0이다.

함수 f(x)의 정의역은 $4-x^2 \ge 0$ 에서 $-2 \le x \le 2$ 이고.

$$f'(x) = \sqrt{4 - x^2} + x \times \frac{-2x}{2\sqrt{4 - x^2}}$$
$$= \frac{2(2 - x^2)}{\sqrt{4 - x^2}}$$

$$f'(x) = 0$$
에서 $2 - x^2 = 0$

$$x = -\sqrt{2}$$
 $\pm \pm x = \sqrt{2}$

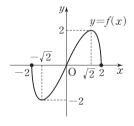
 $-2 \le x \le 2$ 에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

\boldsymbol{x}	-2	•••	$-\sqrt{2}$	•••	$\sqrt{2}$	•••	2
f'(x)		_	0	+	0	_	
f(x)	0	7	극소	1	극대	\	0

함수 f(x)는 $x=-\sqrt{2}$ 에서 극소이고 극솟값은 $f(-\sqrt{2})=-2$.

함수 f(x)는 $x=\sqrt{2}$ 에서 극대이고 극댓값은 $f(\sqrt{2})=2$ 이다.

또 f(-2)=0. f(2)=0이므로 닫힌구간 [-2, 2]에서 함수 f(x)의 최댓값은 2. 최솟값은 -2이다.



(3) 최대·최소의 활용

도형의 길이. 넓이. 부피의 최댓값 또는 최솟값을 구하는 문제는 미분을 이용하여 다음과 같은 순서로 구할 수 있다.

- ① 적당한 변수를 사용하여 도형의 길이, 넓이, 부피를 한 변수에 대한 함수로 나타낸다.
- ② 주어진 조건에 따라 변수의 범위를 구한다.
- ③ 미분을 이용하여 함수의 증가와 감소를 표로 나타내고. 이를 이용하여 최댓값과 최솟값을 구한다.

학수의 최댓값과 최솟값

함수 $f(x) = \frac{\sin x}{2 - \cos x}$ 에 대하여 닫힌구간 $[0, 2\pi]$ 에서 함수 f(x)의 최댓값을 M, 최솟값을 m이라 할 때,

 $M^2 + m^2$ 의 값은?

- ① $\frac{2}{9}$
- $2\frac{1}{2}$
- $3\frac{4}{9}$
- $4\frac{5}{9}$

풀이 전략

닫힌구간 [a,b]에서 연속인 함수 f(x)가 열린구간 (a,b)에서 극값을 가질 때, 극값, f(a), f(b) 중에서 가장 큰 값이 함수 f(x)의 최댓값, 가장 작은 값이 함수 f(x)의 최솟값이다.

풀이
$$f(x) = \frac{\sin x}{2 - \cos x}$$
에서

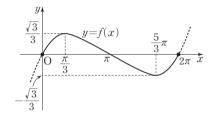
$$f'(x) = \frac{\cos x \times (2 - \cos x) - \sin x \times \sin x}{(2 - \cos x)^2} = \frac{2\cos x - (\cos^2 x + \sin^2 x)}{(2 - \cos x)^2} = \frac{2\cos x - 1}{(2 - \cos x)^2}$$

 $0 \le x \le 2\pi$ 에서 $-1 \le \cos x \le 1$ 이므로 $2 - \cos x \ne 0$

$$f'(x)$$
=0에서 $\cos x=rac{1}{2}$ 이므로 $x=rac{\pi}{3}$ 또는 $x=rac{5}{3}\pi$

닫힌구간 $[0, 2\pi]$ 에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음 과 같다.

x	0		$\frac{\pi}{2}$		$\frac{5}{2}\pi$		2π
f'(x)	_	+	0	_	0	+	
f(x)	0	1	극대	\	극소	1	0



$$f(0) = f(2\pi) = 0$$
이므로

함수
$$f(x)$$
는 $x=\frac{\pi}{3}$ 에서 극대이면서 최대이고, 최댓값은 $M=f\left(\frac{\pi}{3}\right)=\frac{\sin\frac{\pi}{3}}{2-\cos\frac{\pi}{3}}=\frac{\frac{\sqrt{3}}{2}}{2-\frac{1}{2}}=\frac{\sqrt{3}}{3}$

함수
$$f(x)$$
는 $x=\frac{5}{3}\pi$ 에서 극소이면서 최소이고, 최솟값은 $m=f\left(\frac{5}{3}\pi\right)=\frac{\sin\frac{5}{3}\pi}{2-\cos\frac{5}{3}\pi}=\frac{-\frac{\sqrt{3}}{2}}{2-\frac{1}{2}}=-\frac{\sqrt{3}}{3}$

따라서
$$M^2+m^2=\left(\frac{\sqrt{3}}{3}\right)^2+\left(-\frac{\sqrt{3}}{3}\right)^2=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$$

E 5

유제

a>0인 상수 a에 대하여 함수 $f(x)=x(\ln ax)^2$ 이 다음 조건을 만족시킨다.

 $0 < x_1 < 1 < x_2$ 인 모든 실수 x_1 , x_2 에 대하여 $f''(x_1)f''(x_2) < 0$ 이다.

닫힌구간 $\left[\frac{1}{e^2}, e\right]$ 에서 함수 f(x)의 최댓값이 $\frac{k}{e}$ 일 때, 상수 k의 값을 구하시오.

7. 방정식에의 활용

- (1) 방정식 f(x) = 0의 서로 다른 실근의 개수 방정식 f(x)=0의 실근은 함수 y=f(x)의 그래프와 x축이 만나는 점의 x좌표와 같다. 따라서 방정식 f(x)=0의 서로 다른 실근의 개수는 함수 y=f(x)의 그래프가 x축과 만나는 점의 개수와 간다
 - 이 방정식 $e^{2x} 2x 3 = 0$ 의 서로 다른 실근의 개수를 구해 보자. $f(x) = e^{2x} - 2x - 3$ 으로 놓으면 $f'(x) = 2(e^{2x} - 1)$ 이므로 f'(x) = 0에서 x = 0함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	•••	0	•••
f'(x)	_	0	+
f(x)	7	극소	1

함수 f(x)는 x=0에서 극소이고 극솟값은 f(0)=1-3=-2이다. 또 $\lim f(x) = \lim f(x) = \infty$ 이므로 함수 y = f(x)의 그래프는 그림과 같이

x축과 서로 다른 두 점에서 만난다.

따라서 방정식 $e^{2x} - 2x - 3 = 0$ 의 서로 다른 실근의 개수는 2이다.

- (2) 방정식 f(x)=g(x)의 서로 다른 실근의 개수 방정식 f(x)=g(x)의 실근은 두 함수 y=f(x), y=g(x)의 그래프가 만나는 점의 x좌표와 같다. 따라서 방정식 f(x)=g(x)의 서로 다른 실근의 개수는 두 함수 y=f(x), y=g(x)의 그래프가 만나는 점의 개수와 같다
 - **참고** 방정식 f(x)=g(x)에서 f(x)-g(x)=0이므로 방정식 f(x)=g(x)의 서로 다른 실근의 개수는 함수 y=f(x)-g(x)의 그래프와 x축이 만나는 점의 개수와 같다.

8. 부등식에의 활용

- (1) 부등식 $f(x) \ge 0$ 또는 f(x) > 0의 증명 주어진 구간에서 함수 y=f(x)의 그래프를 이용하여 증명한다.
 - 예 $x \ge 0$ 인 모든 실수 x에 대하여 부등식 $x \sin x \ge 0$ 이 성립함을 증명해 보자.

 $f(x)=x-\sin x$ 로 놓으면 $f'(x)=1-\cos x$

모든 실수 x에 대하여 $-1 \le \cos x \le 1$ 이므로

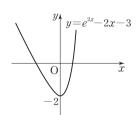
 $0 \le 1 - \cos x \le 2$

따라서 $f'(x) \ge 0$ 이므로 함수 f(x)는 실수 전체의 집합에서 증가한다.

이때 f(0) = 0이므로 $x \ge 0$ 일 때 $f(x) \ge 0$. 즉 $x - \sin x \ge 0$ 이다.

따라서 $x \ge 0$ 인 모든 실수 x에 대하여 부등식 $x - \sin x \ge 0$ 이 성립한다.

(2) 부등식 $f(x) \ge g(x)$ 또는 f(x) > g(x)의 증명 함수 h(x)=f(x)-g(x)로 놓고 주어진 구간에서 부등식 $h(x)\geq 0$ 또는 h(x)>0이 성립함을 증명한다.



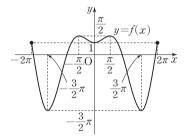
방정식에의 활용

 $-2\pi \le x \le 2\pi$ 에서 정의된 함수 $f(x) = x \sin x + \cos x$ 에 대하여 방정식 f(x) = k의 서로 다른 실근의 개수가 2가 되도록 하는 모든 실수 k의 값의 합은?

- ① -2π
- $\bigcirc -\pi$
- ③ 0
- $\stackrel{\text{\tiny }}{\text{\tiny }}$
- (5) 2π
- 방정식 f(x)=g(x)의 서로 다른 실근의 개수는 두 함수 y=f(x), y=g(x)의 그래프가 만나는 점의 개수와 같으므로 함수의 그래 풀이 전략 프의 개형을 그려서 해결한다.
 - 풀이 방정식 f(x)=k의 서로 다른 실근의 개수는 함수 y=f(x)의 그래프와 직선 y=k가 만나는 점의 개수와 같고. $f(-x) = -x \sin(-x) + \cos(-x) = x \sin x + \cos x = f(x)$ 이므로 함수 y=f(x)의 그래프는 y축에 대하여 대칭이다.

 $f'(x) = \sin x + x \cos x - \sin x = x \cos x$ 이고, $0 < x < 2\pi$ 일 때 f'(x) = 0에서 $x = \frac{\pi}{2}$ 또는 $x = \frac{3}{2}\pi$ 이므로 $0 \le x \le 2\pi$ 에서 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

\boldsymbol{x}	0		$\frac{\pi}{2}$		$\frac{3}{2}\pi$		2π
f'(x)		+	0	_	0	+	
f(x)	1	1	극대	\	극소	1	1



함수 f(x)의 극댓값은 $f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$, 극솟값은 $f\left(\frac{3}{2}\pi\right) = -\frac{3}{2}\pi$

f'(0)=0, f(0)=1이고, 함수 y=f(x)의 그래프가 y축에 대하여 대칭이므 로 $-2\pi \le x \le 2\pi$ 에서 함수 y = f(x)의 그래프는 그림과 같다.

함수 y=f(x)의 그래프와 직선 y=k가 서로 다른 두 점에서 만나야 하므로 $k=\frac{\pi}{2}$ 또는 $k=-\frac{3}{2}\pi$ 이어야 한다.

따라서 모든 실수 k의 값의 합은 $\frac{\pi}{2} + \left(-\frac{3}{2}\pi\right) = -\pi$

2

[21011-0103]

- x>0인 모든 실수 x에 대하여 부등식 $x \ln x 3x \ge k$ 가 성립하도록 하는 실수 k의 최댓값은? 유제
 - $(1) \frac{5}{2}e^2$ $(2) 2e^2$ $(3) \frac{3}{2}e^2$ $(4) e^2$ $(5) \frac{e^2}{2}$

[21011-0104]

- 정의역이 $\{x|x>0\}$ 인 두 함수 $f(x)=e^x$, $g(x)=kx^2$ 에 대하여 방정식 f(x)=g(x)의 실근이 존재 유제 하기 위한 실수 k의 최솟값은? $\left(\mathbf{E}, \lim_{x \to \infty} \frac{e^x}{r^2} = \infty \right)$
 - ① $\frac{e}{2}$

- (5) 2e

9. 속도와 가속도

좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 (x, y)가 x=f(t), y=q(t)일 때, 점 P의 속도와 속력, 가속도와 가속도의 크기는 다음과 같다

(1) 시각 t에서의 점 P의 속도와 속력

① 속도:
$$\left(\frac{dx}{dt}, \frac{dy}{dt}\right)$$
 또는 $(f'(t), g'(t))$

② 속력:
$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{\{f'(t)\}^2 + \{g'(t)\}^2}$$

(2) 시각 t에서의 점 P의 가속도와 가속도의 크기

① 가속도:
$$\left(\frac{d^2x}{dt^2}, \frac{d^2y}{dt^2}\right)$$
 또는 $(f''(t), g''(t))$

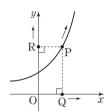
② 가속도의 크기:
$$\sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2} = \sqrt{\{f''(t)\}^2 + \{g''(t)\}^2}$$

[설명] 좌표평면 위를 움직이는 점 P의 시각 t에서의 위치를 (x, y)라 하면 x, y는 모두 t에 대한 함수이므로

$$x=f(t), y=g(t)$$

와 같이 나타낼 수 있다

이때 점 P에서 x축과 y축에 내린 수선의 발을 각각 Q. R라 하면 점 P가 움직일 때 점 Q는 x축 에서 시각 t에서의 위치가 x=f(t)로 나타나는 직선 운동을 하고. 점 R는 y축에서 시각 t에서 의 위치가 y=g(t)로 나타나는 직선 운동을 한다.



(1) 시각 t에서의 점 Q의 속도를 v_r . 점 R의 속도를 v_r 라 하면

$$v_x = \frac{dx}{dt} = f'(t), v_y = \frac{dy}{dt} = g'(t)$$

가 된다. 이때 (v_x, v_y) 를 시각 t에서의 점 P의 속도라 하고,

$$\sqrt{v_x^2 + v_y^2} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{\{f'(t)\}^2 + \{g'(t)\}^2}$$

을 시각 *t*에서의 점 P의 속력이라고 한다.

(2) 시각 t에서의 점 \mathbf{Q} 의 가속도를 a_x , 점 \mathbf{R} 의 가속도를 a_y 라 하면

$$a_x = \frac{dv_x}{dt} = \frac{d^2x}{dt^2} = f''(t), \ a_y = \frac{dv_y}{dt} = \frac{d^2y}{dt^2} = g''(t)$$

가 된다. 이때 (a_x, a_y) 를 시각 t에서의 점 P의 가속도라 하고

$$\sqrt{a_x^2 + a_y^2} = \sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2} = \sqrt{\{f''(t)\}^2 + \{g''(t)\}^2}$$

을 시각 *t*에서의 점 P의 가속도의 크기라고 한다.

 $oxed{ exttt{0}}$ 좌표평면 위를 움직이는 점 $ext{P의 시각}\ t\ (t \geq 0)$ 에서의 위치 $(x,\,y)$ 가 $x = rac{1}{3}t^3,\ y = t^2$ 일 때, 시각 t에서의 점 $ext{P의 속력}$ 과 가속도의 크기를 구해 보자.

$$\frac{dx}{dt} = t^2, \frac{dy}{dt} = 2t$$
이므로 속력은 $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{(t^2)^2 + (2t)^2} = t\sqrt{t^2 + 4}$

$$\frac{d^2x}{dt^2} = 2t, \ \frac{d^2y}{dt^2} = 2$$
이므로 가속도의 크기는 $\sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2} = \sqrt{(2t)^2 + 2^2} = 2\sqrt{t^2 + 1}$

예제 6 속도와 가속도

좌표평면 위를 움직이는 점 P의 시각 t $(0 < t < \pi)$ 에서의 위치 (x, y)가 $x=2 \sin t, y=2t+\cos t$ 이다. 점 P의 속력이 1인 순간의 점 P의 가속도의 크기를 구하시오.

풀이 전략 좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 (x,y)가 x=f(t),y=g(t)일 때의 점 P의 속력, 가속도의 크기는 다음과 같다.

① 속력:
$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{\{f'(t)\}^2 + \{g'(t)\}^2}$$

② 가속도의 크기: $\sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2} = \sqrt{\{f''(t)\}^2 + \{g''(t)\}^2}$

풀이 $\frac{dx}{dt} = 2\cos t$, $\frac{dy}{dt} = 2-\sin t$ 이므로 시각 t에서의 점 P의 속력은

 $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{(2\cos t)^2 + (2-\sin t)^2} = \sqrt{4\cos^2 t + (4-4\sin t + \sin^2 t)}$ $=\sqrt{4(1-\sin^2 t)+(4-4\sin t+\sin^2 t)}=\sqrt{-3\sin^2 t-4\sin t+8}$

점 P의 속력이 1이므로

 $\sqrt{-3\sin^2 t - 4\sin t + 8} = 1$, $3\sin^2 t + 4\sin t - 7 = 0$, $(3\sin t + 7)(\sin t - 1) = 0$

 $0 < t < \pi$ 에서 $3 \sin t + 7 > 0$ 이므로 $\sin t = 1$, $t = \frac{\pi}{2}$

$$\frac{d^2x}{dt^2} = -2\sin t, \frac{d^2y}{dt^2} = -\cos t$$

이므로 시각 $t=\frac{\pi}{2}$ 에서의 점 P의 가속도의 크기는

$$\sqrt{\left(-2\sin\frac{\pi}{2}\right)^2 + \left(-\cos\frac{\pi}{2}\right)^2} = \sqrt{4+0} = 2$$

2

정답과 **풀이** 34쪽

[21011-0105]

- 좌표평면 위를 움직이는 점 P의 시각 t (t>0)에서의 위치 (x, y)가 $x=2t+\frac{1}{t}$, $y=t-\frac{2}{t}$ 이다. t=2유제 (10) 에서의 점 P의 가속도의 크기는?

- ① $\frac{\sqrt{5}}{4}$ ② $\frac{\sqrt{5}}{2}$ ③ $\frac{3\sqrt{5}}{4}$ ④ $\sqrt{5}$ ⑤ $\frac{5\sqrt{5}}{4}$

[21011-0106]

좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 (x, y)가 $x=1-\cos 2t$, $y=\frac{1}{2}\sin 2t$ 이다. 점 P 유제 의 속력의 최댓값이 M. 최솟값이 m일 때, $M^2 + m^2$ 의 값을 구하시오.

- 곡선 $y=\frac{1}{x}(x>0)$ 위의 한 점에서의 접선 l이 직선 $y=\frac{1}{4}x$ 와 수직일 때, 직선 l의 x절편은?
- $\bigcirc \frac{1}{4}$ $\bigcirc \frac{1}{2}$ $\bigcirc \frac{3}{4}$
- **4** 1

[21011-0108]

- 곡선 $y=\frac{1}{2}x^2+ax+\ln x$ 의 변곡점이 x축 위에 있을 때, 상수 a의 값은?

 - $\bigcirc -1 \qquad \bigcirc -\frac{1}{2} \qquad \bigcirc \bigcirc \bigcirc$
- $4\frac{1}{2}$
- (5) 1

[21011-0109]

- 닫힌구간 $[0, \pi]$ 에서 함수 $f(x)=x+2\cos x$ 의 최댓값을 M, 최솟값을 m이라 할 때, M+m의 값은?

- ① $\pi \sqrt{3}$ ② $\pi \frac{\sqrt{3}}{2}$ ③ π ④ $\pi + \frac{\sqrt{3}}{2}$ ⑤ $\pi + \sqrt{3}$

[21011-0110]

- 방정식 $(x+2)^2e^{-x}=k$ 가 서로 다른 세 실근을 갖도록 하는 정수 k의 개수는? (단, $\lim x^2e^{-x}=0$)
- (2) 2
- ③ 3
- (4) **4**
- (5) 5

[21011-0111]

- 5 좌표평면 위를 움직이는 점 P의 시각 t $(t \ge 0)$ 에서의 위치 (x, y)가 $x = \cos t + t \sin t$, $y = \sin t - t \cos t$ 이다. 점 P의 속력이 π 일 때, 직선 OP의 기울기는? (단, O는 원점이다.)
 - $\bigcirc -\pi$
- $2 \frac{1}{\pi}$ 3 0
- $4\frac{1}{\pi}$
- (5) π

- 실수 전체의 집합에서 증가하고 미분가능한 함수 f(x)가 $\lim_{x\to 1} \frac{f(x)}{r-1} = 4$ 를 만족시킨다. 함수 f(x)의 역함수 를 g(x)라 할 때, 곡선 y=g(x) 위의 점 (0, g(0))에서의 접선의 방정식은 y=ax+b이다. 두 상수 a, b의 합 a+b의 값은?

 - ① $\frac{5}{4}$ ② $\frac{3}{2}$
- $3\frac{7}{4}$
- 4 2
- $5\frac{9}{4}$

[21011-0113]

- 정의역이 $\{x \mid 0 \le x \le 2\pi\}$ 인 함수 $f(x) = \ln(4 + a \sin x)$ 에 대하여 곡선 y = f(x)가 x축에 접할 때, 곡선 y=f(x)의 변곡점의 개수는? (단. a=0 < a < 4인 상수이다.)
 - ① 0
- (2) 1
- ③ 2
- (4) **3**
- (5) 4

[21011-0114]

그림과 같이 점 A(-1, 0)과 원 $x^2+y^2=1$ 위의 제1사분면에 있는 점 P에 대하여 $\overline{PA}=\overline{PQ}$ 가 되도록 하는 3 원 위의 점 Q를 잡는다. 다음은 ∠APQ=θ라 할 때. 삼각형 AQP의 넓이의 최댓값을 구하는 과정이다.

점 P가 제1사분면의 점이므로 $0 < \theta < \frac{\pi}{2}$

원점 O에 대하여 ∠AOP= (가) 이므로 삼각형 AOP에서 코사인법칙에 의하여

삼각형 AQP의 넓이를 $S(\theta)$ 라 하면 $S(\theta) = \frac{1}{2} \times$ (나) $\times \sin \theta$

따라서 $S(\theta)$ 는 θ = (다) 일 때, 최댓값 $\frac{3\sqrt{3}}{4}$ 을 갖는다.

위의 (7), (4)에 알맞은 식을 각각 $f(\theta)$, $g(\theta)$ 라 하고, (7)에 알맞은 수를 α 라 할 때, $f(\alpha) \times g(\alpha)$ 의 값은?

- $\bigcirc \frac{2}{2}\pi$
- $^{\circ}$ π
- $\odot 2\pi$

[21011-0115]

- 좌표평면 위를 움직이는 점 P의 시각 t (t>0)에서의 위치가 $x=\ln 2t$, $y=\frac{1}{t}$ 이다. 점 P의 속력이 $\sqrt{2}$ 인 시각 에서 점 P의 가속도의 크기는?
 - 1
- $2\sqrt{2}$
- ③ √3
- **4** 2
- (5) $\sqrt{5}$

양수 a에 대하여 곡선 $y=rac{a}{r^2+1}$ 위의 점 $\mathrm{A}(0,\,a)$ 에서 이 곡선에 그은 접선 중 기울기가 0이 아닌 두 접선이 x축과 만나는 점을 각각 B, C라 하고, $\angle {\rm BAC} = \theta$ 라 하자. $\tan \theta = \frac{4}{3}$ 일 때, 상수 a의 값을 구하시오.

[21011-0117]

2 실수 전체의 집합에서 미분가능한 함수 f(x)가

$$f(x) = \begin{cases} \frac{a(x+1)^2}{x^2+1} & (x \leq 1) \\ x^3+bx^2+cx+d & (x > 1) \end{cases} (a > 0$$
이고, a, b, c, d 는 상수)

일 때, 실수 t에 대하여 방정식 f(x)=t의 실근의 개수를 g(t)라 하자, 함수 g(t)가 다음 조건을 만족시킬 때, $f(-a) \times f(a)$ 의 값은?

$$(7) g(0) = 2$$

- (나) $\lim_{t \to 4^{-}} g(t) \lim_{t \to 4^{+}} g(t) = 2$
- ① $\frac{4}{5}$ ② $\frac{8}{5}$
- $3\frac{12}{5}$ $4\frac{16}{5}$
- (5) 4

[21011-0118]

3 $0 < x < 2\pi$ 에서 정의된 함수 $f(x) = \cos x + 1$ 에 대하여 곡선 y = f(x)가 직선 y = t (0 < t < 2)와 만나는 두 점을 각각 $A(\alpha(t), t)$, $B(\beta(t), t)$ $(\alpha(t) < \beta(t))$ 라 하고, 곡선 y = f(x) 위의 두 점 A, B에서의 접선 이 y축과 만나는 점을 각각 C. D라 하자, 선분 CD의 길이를 g(t)라 할 때, **보기**에서 옳은 것만을 있는 대로 고른 것은?

$$\neg. f'(\alpha(t)) + f'(\beta(t)) = 0$$

$$L \alpha'(t) \times \beta'(t) = -\csc^2(\alpha(t))$$

$$\vdash g'\left(\frac{1}{2}\right) = \frac{2\sqrt{3}}{3}\pi$$

- (1) ¬
- ② 7. L
- 37. ⊏
- 4 L. T 5 7. L. T

○▶ 대표 기출 문제

출제 경향

8

E

-

33

8-1

삼각함수, 지수함수, 로그함수에 대하여 접선의 방정식을 구하거나 함수의 극댓값과 극솟값, 최댓값과 최솟값을 구하는 문제가 출제된다. 함수의 증가와 감소, 곡선의 변곡점을 이용하여 방정식과 부등식에 활용하는 문제와 속도, 가속도의 크기를 구하는 문제도 출제된다.

곡선 $y=ax^2-2\sin 2x$ 가 변곡점을 갖도록 하는 정수 a의 개수는? [3점]

- ① 4
- 2 5
- ③ 6
- 4 7
- (5) **8**

2020학년도 대수능

(출제 의도) 이계도함수와 삼각함수의 그래프를 이용하여 변곡점이 존재하도록 하는 조건을 구할 수 있는지를 묻는 문제이다.

풀이 $f(x)=ax^2-2\sin 2x$ 라 하면

$$f'(x) = 2ax - 4\cos 2x$$

$$f''(x) = 2a + 8 \sin 2x$$

$$f''(x) = 0$$
에서

$$2a+8 \sin 2x=0$$
, $\sin 2x=-\frac{a}{4}$

곡선 y=f(x)가 변곡점을 가지려면 곡선 $y=\sin 2x$ 와 직선 $y=-\frac{a}{4}$ 가 접하지 않고 만나야 한다.

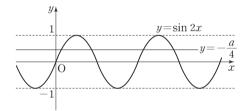
이때
$$-1 \le \sin 2x \le 1$$
이므로 $-1 < -\frac{a}{4} < 1$ 에서

$$-4 < a < 4$$

따라서 정수 a의 값은

$$-3, -2, -1, 0, 1, 2, 3$$

으로 그 개수는 7이다.



4

여러 가지 적분법

1. 함수 $y = x^n (n = 2 4)$ 의 적분

(1)
$$n \neq -1$$
일 때, $\int x^n dx = \frac{1}{n+1} x^{n+1} + C$ (단, C 는 적분상수)

(2)
$$n=-1$$
일 때, $\int x^{-1} dx = \int \frac{1}{r} dx = \ln |x| + C$ (단, C는 적분상수)

설명
$$(1)$$
 $n \neq -1$ 일 때, 함수 $y = x^n$ 의 미분법에서 $\left(\frac{1}{n+1}x^{n+1}\right)' = x^n$ 이므로

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C$$

$$(2)$$
 $n=-1$ 일 때, 로그함수의 미분법에서 $(\ln |x|)'=\frac{1}{x}$ 이므로

$$\int x^{-1} dx = \int \frac{1}{x} dx = \ln|x| + C$$

$$\bigcirc$$
 ① ① $\int \frac{1}{\sqrt{x}} dx = \int x^{-\frac{1}{2}} dx = 2x^{\frac{1}{2}} + C = 2\sqrt{x} + C$ (단, C는 적분상수)

$$2 \int_{1}^{e} \frac{2}{x} dx = \left[2 \ln |x| \right]_{1}^{e} = 2 - 0 = 2$$

2. 지수함수의 적분

(1)
$$\int e^x dx = e^x + C$$
 (단, C는 적분상수)

(2)
$$a > 0$$
, $a \ne 1$ 일 때, $\int a^x dx = \frac{a^x}{\ln a} + C$ (단, C는 적분상수)

설명 지수함수의 미분법에서

(1)
$$(e^x)' = e^x$$
이므로 $\int e^x dx = e^x + C$

(2)
$$(a^x)'=a^x \ln a$$
에서 $a^x=\left(\frac{a^x}{\ln a}\right)'$ 이므로 $\int a^x dx = \frac{a^x}{\ln a} + C$

3. 삼각함수의 적분

(1)
$$\int \sin x dx = -\cos x + C$$
 (단, C는 적분상수) (2) $\int \cos x dx = \sin x + C$ (단, C는 적분상수)

$$(2)$$
 $\int \cos x dx = \sin x + C$ (단, C는 적분상수)

(3)
$$\int \sec^2 x dx = \tan x + C$$
 (단, C는 적분상수)

(3)
$$\int \sec^2 x \, dx = \tan x + C$$
 (단, C는 적분상수) (4) $\int \csc^2 x \, dx = -\cot x + C$ (단, C는 적분상수)

설명 삼각함수의 미분법에서

(1)
$$(\cos x)' = -\sin x$$
이므로 $\int \sin x dx = -\cos x + C$

$$(2) (\sin x)' = \cos x$$
이므로 $\int \cos x dx = \sin x + C$

(3)
$$(\tan x)' = \sec^2 x$$
이므로 $\int \sec^2 x dx = \tan x + C$

(4)
$$(\cot x)' = -\csc^2 x$$
이므로 $\int \csc^2 x dx = -\cot x + C$

여러 가지 함수의 적분법

 $\int_0^{\frac{\pi}{2}} \left| \frac{1}{\sqrt{2}} - \cos x \right| dx \stackrel{\triangle}{=} \text{ if } \stackrel{\triangle}{=} ?$

- ① $2-\sqrt{2}$ ② $\sqrt{2}-1$
- $(3)\sqrt{2}$
- $(4)\sqrt{2}+1$
- ⑤ $2\sqrt{2}$

풀이 전략 절댓값 안의 식의 부호에 따라 구간을 나누고, $\int \cos x dx = \sin x + C$ (C는 적분상수)임을 이용한다.

풀이 $0 \le x \le \frac{\pi}{2}$ 에서 방정식 $\cos x = \frac{1}{\sqrt{2}}$ 의 근은

$$x = \frac{\pi}{4}$$

따라서 $0 \le x \le \frac{\pi}{4}$ 에서 $\cos x \ge \frac{1}{\sqrt{2}}$, $\frac{\pi}{4} \le x \le \frac{\pi}{2}$ 에서 $\cos x \le \frac{1}{\sqrt{2}}$ 이므로

$$\int_{0}^{\frac{\pi}{2}} \left| \frac{1}{\sqrt{2}} - \cos x \right| dx = \int_{0}^{\frac{\pi}{4}} \left(\cos x - \frac{1}{\sqrt{2}} \right) dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left(\frac{1}{\sqrt{2}} - \cos x \right) dx$$

$$= \left[\sin x - \frac{1}{\sqrt{2}} x \right]_{0}^{\frac{\pi}{4}} + \left[\frac{1}{\sqrt{2}} x - \sin x \right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \times \frac{\pi}{4} \right) + \left\{ \left(\frac{1}{\sqrt{2}} \times \frac{\pi}{2} - 1 \right) - \left(\frac{1}{\sqrt{2}} \times \frac{\pi}{4} - \frac{1}{\sqrt{2}} \right) \right\}$$

$$= \sqrt{2} - 1$$

2

[21011-0119]

함수 f(x)에 대하여 $f'(x)=x+\sqrt{x}$ 이고 $f(1)=\frac{11}{6}$ 일 때, f(4)의 값을 구하시오.

- ① $\frac{1}{3 \ln 2}$ ② $\frac{1}{\ln 7}$ ③ $\frac{1}{\ln 6}$ ④ $\frac{1}{\ln 5}$ ⑤ $\frac{1}{2 \ln 2}$

4. 치환적분법

(1) 부정적분의 치화적분법

미분가능한 함수 g(t)에 대하여 x=g(t)로 놓으면

$$\int f(x) dx = \int f(g(t))g'(t)dt$$

참고부정적분이 $\int f(g(x))g'(x)dx$ 꼴인 경우 g(x)=t로 놓으면 $g'(x)=\frac{dt}{dx}$ 이므로 치환적분법에 의하여 $\int f(g(x))g'(x)dx = \int f(t)dt$ 가 성립한다.

(2) 정적부의 치화적부법

함수 f(x)가 닫힌구간 [a,b]에서 연속이고 미분가능한 함수 x=g(t)에 대하여 $a=g(\alpha),b=g(\beta)$ 일 때, 도함수 g'(t)가 α , β 를 포함하는 구간에서 연속이면

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(g(t))g'(t)dt$$

설명 (1) 함수 f(x)의 한 부정적분을 F(x)라 하면

$$\int f(x) dx = F(x) + C \qquad \dots \oplus$$

이때 F(x)에서 미분가능한 함수 g(t)에 대하여 x=g(t)로 놓으면 F(x)=F(g(t))

이 식의 양변을 t에 대하여 미분하면 합성함수의 미분법에 의하여

$$\frac{d}{dt}F(x) = \frac{d}{dt}F(g(t)) = F'(g(t))g'(t) = f(g(t))g'(t)$$

$$\stackrel{\text{\tiny def}}{=}$$
, $\int f(g(t))g'(t) dt = F(x) + C$

이, 일에서
$$\int f(x) dx = \int f(g(t))g'(t) dt$$

(2) 함수 f(x)의 한 부정적분을 F(x)라 하면

$$\int_{a}^{b} f(x) dx = \left[F(x) \right]_{a}^{b} = F(b) - F(a)$$
 ©

a=g(lpha), b=g(eta)일 때, x=g(t)의 도함수 g'(t)가 lpha, eta를 포함하는 구간에서 연속이면

$$\int_a^\beta f(g(t))g'(t)dt = \Big[F(g(t))\Big]_a^\beta = F(g(\beta)) - F(g(\alpha)) = F(b) - F(a) \qquad \cdots \cdots \in \mathbb{R}$$

$$\text{ In } \int_a^b f(x)\,dx = \int_a^\beta f(g(t))g'(t)dt$$

에 $\int_0^1 (2x+1)^3 dx$ 에서 2x+1=t로 놓으면 x=0일 때 t=1, x=1일 때 t=3이고, $2=\frac{dt}{dx}$ 이므로

$$\int_{0}^{1} (2x+1)^{3} dx = \frac{1}{2} \int_{1}^{3} t^{3} dt = \frac{1}{2} \left[\frac{1}{4} t^{4} \right]_{1}^{3} = \frac{1}{2} \times \left(\frac{81}{4} - \frac{1}{4} \right) = 10$$

참고 $\int \frac{f'(x)}{f(x)} dx$ 에서 f(x)=t로 놓으면 $f'(x)=\frac{dt}{dx}$ 이므로 $\int \frac{f'(x)}{f(x)} dx = \int \frac{1}{t} dt = \ln|t| + C = \ln|f(x)| + C \text{ (단, } C$ 는 적분상수)

에
$$\int \tan x dx = \int \frac{\sin x}{\cos x} dx = -\int \frac{(\cos x)'}{\cos x} dx = -\ln|\cos x| + C$$
 (단, C는 적분상수)

예제 2 기환적분법

 $\int_{\sqrt{3}}^{2\sqrt{3}} x\sqrt{x^2-3} dx$ 의 값은?

- ② 3
- ③ $3\sqrt{3}$
- **4** 9
- ⑤ 9√3

풀이 $(x^2-3)'=2x$ 이므로 $x^2-3=t$ 로 놓고, 치환적분법을 이용하여 정적분의 값을 구한다.

풀이 $\int_{\sqrt{3}}^{2\sqrt{3}} x \sqrt{x^2 - 3} dx$ 에서 $x^2 - 3 = t$ 로 놓으면 $x=\sqrt{3}$ 일 때 t=0, $x=2\sqrt{3}$ 일 때 t=9이고, $2x=\frac{dt}{dx}$ 이므로

$$\int_{\sqrt{3}}^{2\sqrt{3}} x \sqrt{x^2 - 3} \, dx = \frac{1}{2} \int_0^9 \sqrt{t} \, dt$$

$$= \frac{1}{2} \int_0^9 t^{\frac{1}{2}} \, dt$$

$$= \frac{1}{2} \left[\frac{2}{3} t^{\frac{3}{2}} \right]_0^9$$

$$= \frac{1}{2} \times (18 - 0)$$

$$= 9$$

4

[21011-0121]

함수 f(x)에 대하여 $f'(x) = (1+2\sin x)\cos x$ 이고 $f\left(\frac{3\pi}{2}\right) = \frac{1}{2}$ 일 때, $f\left(\frac{\pi}{2}\right)$ 의 값은?

- \bigcirc 2

- $2\frac{9}{4}$ $3\frac{5}{2}$ $4\frac{11}{4}$

유제 $\int_{2}^{\sqrt{6}} \frac{x^{3}}{r^{4}+4} dx = \ln k$ 일 때, k^{10} 의 값은?

- ① 2 ② $2\sqrt{2}$ ③ 4 ④ $4\sqrt{2}$
- (5) **8**

5. 부분적분법

(1) 부정적분의 부분적분법

두 함수 f(x), g(x)가 미분가능할 때.

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

(2) 정적분의 부분적분법

두 함수 f(x), g(x)가 미분가능하고 f'(x), g'(x)가 닫힌구간 [a, b]에서 연속일 때.

$$\int_a^b f(x)g'(x)dx = \left[f(x)g(x)\right]_a^b - \int_a^b f'(x)g(x)dx$$

설명 (1) 두 함수 f(x), g(x)가 미분가능할 때, 곱의 미분법에 의하여

$${f(x)g(x)}'=f'(x)g(x)+f(x)g'(x)$$

이므로
$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx$$

$$\leq$$
, $\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$

(2) 두 함수 f(x), g(x)가 미분가능하고 f'(x), g'(x)가 닫힌구간 [a, b]에서 연속일 때, 부정적분의 부분적분법에 의하여

$$\int_a^b f(x)g'(x)dx = \left[f(x)g(x)\right]_a^b - \int_a^b f'(x)g(x)dx$$

참고 두 함수의 곱으로 이루어진 함수를 부분적분법을 이용하여 적분할 때, 미분하면 간단해지는 함수를 f(x)로 놓고, 적분 하기 쉬운 함수를 g'(x)로 놓는다.

로그함수 다항함수 삼각함수 지수함수
$$f(x) \leftarrow \qquad \qquad \Rightarrow g'(x)$$

u(x)=x, $v'(x)=\sin x$ 로 놓으면 u'(x)=1, $v(x)=-\cos x$ 이므로

$$\int_{0}^{\frac{\pi}{2}} x \sin x dx = \left[-x \cos x \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (-\cos x) dx$$
$$= \left[-x \cos x \right]_{0}^{\frac{\pi}{2}} + \left[\sin x \right]_{0}^{\frac{\pi}{2}}$$
$$= 0 + 1 = 1$$

 $2 \int_{1}^{e} \ln x dx$

$$u(x)$$
= $\ln x$, $v'(x)$ =1로 놓으면 $u'(x)=\frac{1}{x}$, $v(x)$ = x 이므로

$$\int_{1}^{e} \ln x dx = \left[x \ln x \right]_{1}^{e} - \int_{1}^{e} dx$$
$$= \left[x \ln x \right]_{1}^{e} - \left[x \right]_{1}^{e}$$
$$= e - (e - 1) = 1$$

 $\int_0^{\frac{\pi}{3}} \frac{x}{\cos^2 x} dx + \ln 2$ 의 값은?

- $2 \frac{\sqrt{2}\pi}{2}$
- $3\frac{\sqrt{3}\pi}{3}$ $4\frac{2\pi}{3}$
- $\sqrt{5\pi}$

풀이 전략 u(x)=x, $v'(x)=\sec^2 x$ 로 놓고, 부분적분법을 이용하여 정적분의 값을 구한다.

 $\int_{0}^{\frac{\pi}{3}} \frac{x}{\cos^{2}x} dx = \int_{0}^{\frac{\pi}{3}} x \sec^{2}x dx$

 $\int_0^{\frac{\pi}{3}} x \sec^2 x dx$ 에서 u(x)=x, $v'(x)=\sec^2 x$ 로 놓으면 u'(x)=1, $v(x)=\tan x$ 이므로

$$\int_{0}^{\frac{\pi}{3}} x \sec^{2} x \, dx = \left[x \tan x \right]_{0}^{\frac{\pi}{3}} - \int_{0}^{\frac{\pi}{3}} \tan x \, dx = \left[x \tan x \right]_{0}^{\frac{\pi}{3}} - \int_{0}^{\frac{\pi}{3}} \frac{\sin x}{\cos x} \, dx$$

$$= \left[x \tan x \right]_{0}^{\frac{\pi}{3}} + \int_{0}^{\frac{\pi}{3}} \frac{-\sin x}{\cos x} \, dx = \left[x \tan x \right]_{0}^{\frac{\pi}{3}} + \left[\ln|\cos x| \right]_{0}^{\frac{\pi}{3}}$$

$$= \frac{\pi}{3} \times \sqrt{3} + \ln \frac{1}{2} = \frac{\sqrt{3}\pi}{3} - \ln 2$$

따라서

$$\int_{0}^{\frac{\pi}{3}} \frac{x}{\cos^{2} x} dx + \ln 2 = \int_{0}^{\frac{\pi}{3}} x \sec^{2} x dx + \ln 2$$
$$= \left(\frac{\sqrt{3}\pi}{3} - \ln 2\right) + \ln 2$$
$$= \frac{\sqrt{3}\pi}{3}$$

3

 $\int_{1}^{e} x \ln x dx = ae^{2} + b$ 일 때, 16(a+b)의 값을 구하시오. (단, a, b는 유리수이고, e^{2} 은 무리수이다.)

[21011-0124]

- 유제 6 $\int_{0}^{1} 9xe^{3x} dx$ 의 값은?
- ① $e^3 1$ ② $e^3 + 1$ ③ $2e^3 1$ ④ $2e^3$ ⑤ $2e^3 + 1$

6. 정적분으로 표시된 함수의 미분과 극한

- (1) 정적분으로 표시된 함수의 미분 연속함수 f(x)에 대하여
 - ① $\frac{d}{dx} \int_{-\infty}^{x} f(t) dt = f(x)$ (단, a는 상수)
 - ② $\frac{d}{dx} \int_{a}^{x+a} f(t)dt = f(x+a) f(x)$ (단, a는 상수)
 - ③ 두 함수 g(x), h(x)가 미분가능할 때,

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt = f(h(x))h'(x) - f(g(x))g'(x)$$

설명 함수 f(x)의 한 부정적분을 F(x)라 하면

$$\textcircled{1} \frac{d}{dx} \int_{a}^{x} f(t)dt = \frac{d}{dx} \Big[F(t) \Big]_{a}^{x} = \frac{d}{dx} \{ F(x) - F(a) \}$$

$$= f(x)$$

(2) 정적분으로 표시된 함수의 극한

연속함수 f(x)에 대하여

①
$$\lim_{x\to 0} \frac{1}{x} \int_{a}^{a+x} f(t)dt = f(a)$$
 (단, a는 상수)

②
$$\lim_{x\to a} \frac{1}{x-a} \int_a^x f(t)dt = f(a)$$
 (단, a는 상수)

설명 함수 f(x)의 한 부정적분을 F(x)라 하면

①
$$\lim_{x\to 0} \frac{1}{x} \int_{a}^{a+x} f(t)dt = \lim_{x\to 0} \frac{1}{x} \left[F(t) \right]_{a}^{a+x} = \lim_{x\to 0} \frac{F(a+x) - F(a)}{x}$$

$$= F'(a) = f(a)$$

예제 4 정적분으로 표시된 함수의 극한

함수 $f(x) = \sin \frac{\pi x}{4} + 2$ 에 대하여 $\lim_{x \to 0} \frac{1}{x} \int_{2}^{2+x} f(t) dt + \lim_{x \to 2} \frac{1}{x - 2} \int_{4}^{x^{2}} f(t) dt$ 의 값을 구하시오.

(1)
$$\lim_{t\to 0} \frac{1}{x} \int_a^{a+x} f(t)dt = f(a)$$
 (단, a는 상수)

풀이 전략 (1)
$$\lim_{x\to 0} \frac{1}{r} \int_a^{a+x} f(t)dt = f(a)$$
 (단, a 는 상수) (2) $\lim_{x\to 0} \frac{1}{r-a} \int_a^x f(t)dt = f(a)$ (단, a 는 상수)

풀이 함수 f(x)의 한 부정적분을 F(x)라 하면 F'(x)=f(x)

(i)
$$\lim_{x\to 0} \frac{1}{x} \int_{2}^{2+x} f(t) dt = \lim_{x\to 0} \frac{1}{x} \left[F(t) \right]_{2}^{2+x} = \lim_{x\to 0} \frac{F(2+x) - F(2)}{x}$$

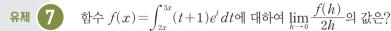
$$= F'(2) = f(2)$$

$$= 1 + 2 = 3$$

$$\begin{split} \text{(ii)} & \lim_{x \to 2} \frac{1}{x - 2} \int_{4}^{x^{2}} f(t) dt = \lim_{x \to 2} \frac{1}{x - 2} \Big[F(t) \Big]_{4}^{x^{2}} = \lim_{x \to 2} \frac{F(x^{2}) - F(4)}{x - 2} \\ & = \lim_{x \to 2} \Big[\frac{F(x^{2}) - F(4)}{x^{2} - 4} \times (x + 2) \Big] \\ & = F'(4) \times 4 = f(4) \times 4 \\ & = 2 \times 4 = 8 \end{split}$$

(i), (ii) $\lim_{x\to 0} \frac{1}{x} \int_{2}^{2+x} f(t) dt + \lim_{x\to 2} \frac{1}{x-2} \int_{4}^{x^{3}} f(t) dt = 3 + 8 = 11$

图 11



- $\bigcirc \frac{1}{6}$ $\bigcirc \frac{1}{3}$ $\bigcirc \frac{1}{2}$ $\bigcirc \frac{5}{6}$

실수 전체의 집합에서 미분가능한 함수 f(x)가 모든 실수 x에 대하여 $f(x)=2(e^x-1)+\int_0^x f(t)dt$ 를 만족시킬 때, f'(0)의 값은?

- $\bigcirc 1 2 \qquad \bigcirc 2 1 \qquad \bigcirc 3 \ 0$
- (4) **1**
- (5) 2

- $\int_0^{\frac{\pi}{2}} (\sin x + \cos x) dx$ 의 값은?
 - ① $\frac{1}{2}$ ② 1
- $3\frac{3}{2}$
- **4** 2

- **2** $\int_0^9 (x-\sqrt{x}-1) dx$ 의 값은?

 - ① 13 ② $\frac{27}{2}$
- ③ 14
- $4\frac{29}{2}$
- ⑤ 15

- $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x \cos x}{\sin x + \cos x} dx$ 의 값은?
 - ① $\frac{1}{2} \ln 2$

- ② $\ln 2$ ③ $\frac{3}{2} \ln 2$ ④ $2 \ln 2$ ⑤ $\frac{5}{2} \ln 2$

- $\int_{1}^{e} \left(\ln x^{3} + \frac{1}{x} \right) dx \stackrel{\text{def}}{=} 2$
 - ① 1
- ② 2
- ③ 3
- 4 4
- (5) **5**

 $\int_{1}^{3} \frac{2}{x^{2}+4x+3} dx = \ln \frac{q}{p}$ 일 때, p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.)

f(x)에 대하여 $f'(x) = \frac{1}{\sin^2 x \cos^2 x}$ 이고 $f\left(\frac{\pi}{4}\right) = \frac{\sqrt{3}}{3}$ 일 때, $f\left(\frac{\pi}{3}\right)$ 의 값은?

- ① $\frac{\sqrt{3}}{3}$ ② $\frac{2\sqrt{3}}{3}$ ③ $\sqrt{3}$ ④ $\frac{4\sqrt{3}}{3}$ ⑤ $\frac{5\sqrt{3}}{3}$

 $\int_{\frac{\pi}{2}}^{\pi} (x+2)\cos 2x dx$ 의 값은?

- ① $\frac{1}{4}$ ② $\frac{1}{2}$ ③ $\frac{3}{4}$
- **4** 1
- $^{(5)}\frac{5}{4}$

다음은 $\int_0^{\frac{\pi}{8}} \sin^2 4x dx$ 의 값을 구하는 과정이다.

 $\int_{0}^{\frac{\pi}{8}} \sin^{2} 4x \, dx = \int_{0}^{\frac{\pi}{8}} (\sin 4x \times \sin 4x) \, dx$ $u(x) = \sin 4x, v'(x) = \sin 4x$ 로 놓으면 $u'(x)=4\cos 4x$, v(x)= (가) 이므로 $\int_{0}^{\frac{\pi}{8}} \sin^{2} 4x \, dx = \int_{0}^{\frac{\pi}{8}} \cos^{2} 4x \, dx$

따라서 $2\int_0^{\frac{\pi}{8}} \sin^2 4x \, dx = \int_0^{\frac{\pi}{8}} \sin^2 4x \, dx + \int_0^{\frac{\pi}{8}} \sin^2 4x \, dx$ 이므로 $\int_{0}^{\frac{\pi}{8}} \sin^2 4x \, dx = \boxed{(1)}$

위의 (가)에 알맞은 식을 f(x)라 하고, (나)에 알맞은 수를 p라 할 때, f(p)의 값은? $\left(\text{단, }f\left(\frac{\pi}{8}\right)=0\right)$

- $(1) \frac{\sqrt{2}}{8}$ $(2) \frac{\sqrt{2}}{16}$ (3) 0 $(4) \frac{\sqrt{2}}{16}$ $(5) \frac{\sqrt{2}}{8}$

좌표평면의 원점을 지나는 곡선 y=f(x) 위의 임의의 점 (x,y)에서의 접선의 기울기가 $\sin^3 x$ 이다. 곡선 y=f(x)가 점 (π, k) 를 지날 때, k의 값은?

 \bigcirc 1

 $2\frac{7}{6}$ $3\frac{4}{3}$ $4\frac{3}{2}$ $5\frac{5}{3}$

[21011-0136]

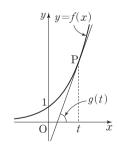
실수 전체의 집합에서 연속인 함수 f(x)가 모든 실수 x에 대하여 $f(x)+f(-x)=\cos\frac{\pi x}{8}$ 를 만족시킨다. $\int_{-2}^{2} f(x) dx = \frac{k}{\pi}$ 일 때, k^2 의 값을 구하시오.

[21011-0137]

정의역이 $\{x \mid x>0\}$ 인 미분가능한 함수 f(x)가 모든 양의 실수 x에 대하여 $xf'(x)+f(x)=4x^3\ln x$ 를 만족 시킨다. $f(1) = -\frac{1}{4}$ 일 때, f(e)의 값은?

① $\frac{3}{4}e^3$ ② $\frac{7}{8}e^3$ ③ e^3 ④ $\frac{9}{8}e^3$ ⑤ $\frac{5}{4}e^3$

그림과 같이 함수 $f(x)=2^x$ 에 대하여 곡선 y=f(x) 위의 점 $\mathrm{P}(t,\ f(t))$ 에서의 접선이 x축의 양의 방향과 이루는 예각의 크기를 g(t)라 하자. $\int_0^2 t \tan g(t) \, dt = \frac{\ln k - 3}{\ln 2}$ 일 때. k의 값을 구하시오.



- a>0, b>0인 두 실수 a, b에 대하여 함수 $f(x)=a\cos\left(bx+\frac{\pi}{3}\right)$ 가 f(0)=1, f''(0)=-4를 만족시킬 때, $\int_0^{\frac{\pi}{3}} f(x) dx$ 의 값은?

 - $(1) \sqrt{3}$ $(2) \frac{\sqrt{3}}{2}$ (3) 0 $(4) \frac{\sqrt{3}}{2}$
- ⑤ √3

6 $\int_0^{\frac{\pi}{3}} \frac{1}{\cos^4 x} dx = k$ 일 때, k^2 의 값을 구하시오.

- [21011-0141] 실수 전체의 집합에서 이계도함수가 존재하는 함수 f(x)가 $\int_0^\pi \{f''(x)+4f(x)\}\sin 2x dx+2\pi^2=0$ 을 만족시킨다. f(0)=1일 때, $f(\pi)$ 의 값은?
 - ① $\pi 1$
- ② π
- $3\pi+1$ $4\pi^2-1$ $5\pi^2+1$

- [21011-0142] 실수 전체의 집합에서 미분가능한 함수 f(x)가 모든 실수 x에 대하여 $f(x)+\int_{\pi}^{x}f(t)e^{x-t}dt=\cos 2x$ 를 만족시킨다. $f\left(\frac{\pi}{8}\right)$ 의 값은?
 - ① $\frac{\sqrt{2}}{8}$ ② $\frac{1}{4}$ ③ $\frac{\sqrt{2}}{4}$ ④ $\frac{1}{2}$ ⑤ $\frac{\sqrt{2}}{2}$

[21011-0143]

실수 전체의 집합에서 이계도함수가 존재하는 함수 f(x)가 모든 실수 x에 대하여

$$f(x) = \cos x - 2 \int_0^x f(t) \sin(x-t) dt$$

를 만족시킬 때. **보기**에서 옳은 것만을 있는 대로 고른 것은?

$$\neg . f(0) = 1$$

$$L. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t) \sin t \, dt = \frac{f'\left(-\frac{\pi}{2}\right) + f'\left(\frac{\pi}{2}\right)}{2}$$

 $\vdash f''(0) = 3$

(1) ¬

- ② L
- ③ ¬ ⊏
- (4) L E
- (5) コ. L. ㄷ

[21011-0144]

- 2 실수 전체의 집합에서 미분가능한 두 함수 f(x), g(x)가 다음 조건을 만족시킨다.
 - (가) 모든 실수 x에 대하여 f(x) > 0, g(x) > 0이다.
 - (나) 모든 실수 x에 대하여 f'(x)g(x)-f(x)g'(x)=f(x)g(x)이다.
 - f(1)=g(1)일 때, $\sum_{n=2}^{\infty}\frac{g(n)}{f(n)}$ 의 값은? (단, n은 자연수이다.)

- ① $\frac{1}{e+1}$ ② $\frac{1}{e-1}$ ③ $\frac{e}{e+1}$ ④ $\frac{e}{e-1}$ ⑤ $\frac{e+1}{e-1}$

[21011-0145]

정의역이 $\{x|x>0\}$ 인 미분가능한 함수 f(x)가 모든 양의 실수 x에 대하여

$$f(x) > 0$$
, $\{f(x)\}^2 - xf(x)f'(x) = x^4e^{-x}$

을 만족시킨다

$$\int_{1}^{2} \frac{e^{2x} \{f(2x)\}^{3}}{x^{3}} dx - 12 \int_{2}^{4} f(x) dx = \frac{e^{4}}{m} \{f(4)\}^{3} - \frac{e^{2}}{2} \{f(2)\}^{3}$$

일 때, 자연수 *m*의 값을 구하시오.

○ 대표 기출 문제

출제 경향

정적분으로 표시된 함수에 대한 미분이나 극한과 관련된 문제와 지수함수, 로그함수, 삼각함수에 대하여 치환적분법 또는 부분적분법을 이용하여 정적분의 값을 구하는 문제가 출제되고 있다.

두 함수 f(x), g(x)는 실수 전체의 집합에서 도함수가 연속이고 다음 조건을 만족시킨다.

(가) 모든 실수
$$x$$
에 대하여 $f(x)g(x)=x^4-1$ 이다.

(나)
$$\int_{-1}^{1} \{f(x)\}^2 g'(x) dx = 120$$

$$\int_{-1}^{1} x^3 f(x) dx$$
의 값은? [4점]

- ① 12
- ② 15
- ③ 18
- (4) 21
- (5) 24

2020학년도 대수능 9월 모의평가

(출제 의도) 부분적분법을 이용하여 정적분의 값을 구할 수 있는지를 묻는 문제이다.

풀이 조건 (가)에서
$$f(x)g(x) = x^4 - 1$$
이므로

$$f(1)q(1)=0$$
, $f(-1)q(-1)=0$

$$\mathbb{E} f'(x)g(x)+f(x)g'(x)=4x^3 \qquad \cdots$$

한편,
$$\int_{-1}^{1} \{f(x)\}^2 g'(x) dx$$
에서 $u(x) = \{f(x)\}^2$, $v'(x) = g'(x)$ 로 놓으면

$$u'(x) = 2f(x)f'(x), v(x) = g(x)$$
이므로

$$\int_{-1}^{1} \{f(x)\}^{2} g'(x) dx = \left[\{f(x)\}^{2} g(x) \right]_{-1}^{1} - 2 \int_{-1}^{1} f(x) f'(x) g(x) dx$$
$$= 0 - 2 \int_{-1}^{1} f(x) f'(x) g(x) dx$$

조건 (나)에서
$$\int_{-1}^{1} \{f(x)\}^2 g'(x) dx = 120$$
이므로

$$\int_{1}^{1} f(x)f'(x)g(x) dx = -60$$

이때 ①에서
$$f'(x)g(x)=4x^3-f(x)g'(x)$$
이므로

$$\int_{1}^{1} f(x) \{4x^{3} - f(x)g'(x)\} dx = -60$$

$$4\int_{-1}^{1} x^{3} f(x) dx - \int_{-1}^{1} \{f(x)\}^{2} g'(x) dx = -60$$

따라서
$$4\int_{-1}^{1} x^3 f(x) dx - 120 = -60$$
에서 $4\int_{-1}^{1} x^3 f(x) dx = 60$ 이므로

$$\int_{0}^{1} x^{3} f(x) dx = 15$$

P (2)

정적분의 활용

1. 정적분과 급수

함수 f(x)가 닫힌구간 [a, b]에서 연속일 때,

$$\lim_{n\to\infty}\sum_{k=1}^{n}f\left(a+\frac{b-a}{n}k\right)\frac{b-a}{n}=\int_{a}^{b}f(x)\,dx$$

설명 함수 f(x)가 닫힌구간 [a, b]에서 연속이고 $f(x) \ge 0$ 일 때, 그림과 같이 닫힌구간 [a, b]를 n등분하여 양 끝 점과 각 분점의 x좌표를 차례대로

$$a=x_0, x_1, x_2, \dots, x_{n-1}, x_n=b$$

라 하고, 닫힌구간 $[x_{k-1}, x_k]$ 의 길이를 Δx 라 하면

$$\Delta x = \frac{b-a}{n}, x_k = a + k \Delta x$$
 (단, $k = 1, 2, 3, \dots, n$)

이때 그림과 같이 n개의 직사각형을 만들고. 이 직사각형의 넓이의 합을 S...이라 하면

$$S_n = f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + \dots + f(x_n) \Delta x$$
$$= \sum_{k=1}^n f(x_k) \Delta x$$

n의 값이 한없이 커질 때 S_x 은 곡선 y=f(x)와 x축 및 두 직선 x=a, x=b로 둘러싸인 부분의 넓이에 한없이 가까워지므로

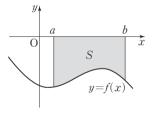
$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^n f(x_k) \Delta x$$
$$= \int_a^b f(x) dx$$

즉,
$$\lim_{n\to\infty}\sum_{k=1}^n f\left(a+\frac{b-a}{n}k\right)\frac{b-a}{n}=\int_a^b f(x)\,dx$$
가 성립한다.

한편. 함수 f(x)가 닫힌구간 [a, b]에서 연속이고. $f(x) \le 0$ 이면 $f(x_b) \le 0$.

 $\Delta x>0$ 이므로 곡선 y=f(x)와 x축 및 두 직선 x=a, x=b로 둘러싸인 도형의 넓이 를 S라 하면

$$\lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x = -S = -\int_{a}^{b} \{-f(x)\} dx$$
$$= \int_{a}^{b} f(x) dx$$



참고 (1)
$$\lim_{n\to\infty} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{1}{n} = \int_{0}^{1} f(x) dx$$

(2)
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{p}{n}k\right) \frac{p}{n} = \int_{0}^{p} f(x) dx$$

$$=p\int_0^1 f(px) dx$$
 (단, p는 상수)

(3)
$$\lim_{n\to\infty} \sum_{k=1}^{n} f\left(a + \frac{p}{n}k\right) \frac{p}{n} = \int_{a}^{a+p} f(x) dx = \int_{0}^{p} f(a+x) dx$$
$$= p \int_{0}^{1} f(a+px) dx \text{ (단, a, p는 상수)}$$

예제 1 정적분과 급수

$$\lim_{n\to\infty}\frac{\pi^2}{n^2}\left(\cos\frac{\pi}{n}+2\cos\frac{2\pi}{n}+3\cos\frac{3\pi}{n}+\cdots+n\cos\frac{n\pi}{n}\right)$$
의 값은?

- $\bigcirc -2$
- (2) (3)
- ③ 0
- (4) 1
- (5)2

풀이 전략 주어진 급수를 정적분으로 변형하고, 정적분의 값을 구한다.

 $\lim_{n \to \infty} \frac{\pi^2}{n^2} \left(\cos \frac{\pi}{n} + 2 \cos \frac{2\pi}{n} + 3 \cos \frac{3\pi}{n} + \dots + n \cos \frac{n\pi}{n} \right)$ $= \lim_{n \to \infty} \frac{\pi^2}{n} \left(\frac{1}{n} \cos \frac{\pi}{n} + \frac{2}{n} \cos \frac{2\pi}{n} + \frac{3}{n} \cos \frac{3\pi}{n} + \dots + \frac{n}{n} \cos \frac{n\pi}{n} \right)$ $= \lim_{n \to \infty} \frac{\pi^2}{n} \sum_{k=1}^n \frac{k}{n} \cos \frac{k\pi}{n}$ $= \pi^2 \int_0^1 x \cos \pi x dx$ $\circ | \text{ Iff } \int_0^1 x \cos \pi x dx | \text{ If } u(x) = x, \ v'(x) = \cos \pi x \text{ If } \frac{1}{n} \sin \pi x | \text{ If } \frac{1}{n} \sin \pi x | \text{ If } \frac{1}{n} \cos \pi x | \text{ If } \frac{1}{n}$

1

참고

 $\lim_{n\to\infty}\frac{\pi^2}{n}\sum_{k=1}^n\frac{k}{n}\cos\frac{k\pi}{n}=\lim_{n\to\infty}\frac{\pi}{n}\sum_{k=1}^n\frac{k\pi}{n}\cos\frac{k\pi}{n}=\int_0^\pi x\cos x\,dx$ 를 이용하여 풀 수도 있다.

정답과 **풀이 48**쪽

[21011-0146]

- 유제 ① 함수 $f(x) = e^x$ 에 대하여 $\lim_{n \to \infty} \sum_{k=1}^n f\left(\ln 2 + \frac{\ln 2 \times k}{n}\right) \frac{\ln 2}{n}$ 의 값은?
 - \bigcirc 1
- 2 2
- ③ 3
- (4) **4**
- (5) **5**

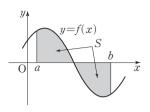
[21011–0147]

유제 2 $\lim_{n\to\infty}\sum\limits_{k=1}^{n}\frac{2n+4k}{n^{2}+kn+k^{2}}=\ln m$ 일 때, 정수 m의 값을 구하시오.

2. 곡선과 x축 사이의 넓이

함수 f(x)가 닫힌구간 [a, b]에서 연속일 때, 곡선 y=f(x)와 x축 및 두 직선 x=a, x=b로 둘러싸인 부분의 넓이 S는

$$S = \int_a^b |f(x)| dx$$



- 설명 함수 f(x)가 닫힌구간 [a, b]에서 연속일 때, 곡선 y=f(x)와 x축 및 두 직선 x=a, x=b로 둘러싸인 부분의 넓이 S를 각 경우로 나누어 구해 보면 다음과 같다.
 - (i) 닫힌구간 [a, b]에서 $f(x) \ge 0$ 인 경우

$$S = \int_{a}^{b} f(x) dx$$

이때 f(x) = |f(x)|이므로

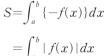
$$S = \int_{a}^{b} f(x) dx$$

$$= \int_a^b |f(x)| dx$$

(ii) 닫힌구간 [a, b]에서 $f(x) \le 0$ 인 경우

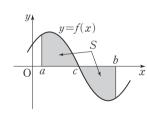
곡선 y=f(x)와 곡선 y=-f(x)는 x축에 대하여 대칭이므로 곡선 y=-f(x)와 x축 및 두 직선 x=a, x=b로 둘러싸인 부분의 넓이는 S이다.

$$S = \int_{a}^{b} \{-f(x)\} dx$$
$$= \int_{a}^{b} |f(x)| dx$$



- (iii) 닫힌구간 [a, c]에서 $f(x) \ge 0$, 닫힌구간 [c, b]에서 $f(x) \le 0$ 인 경우
 - (i), (ii)에 의하여

$$S = \int_{a}^{c} f(x) dx + \int_{c}^{b} \{-f(x)\} dx$$
$$= \int_{a}^{c} |f(x)| dx + \int_{c}^{b} |f(x)| dx$$
$$= \int_{a}^{b} |f(x)| dx$$



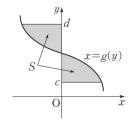
Oa

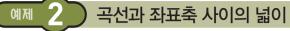
참고 곡선과 y축 사이의 넓이

함수 x=g(y)가 닫힌구간 [c,d]에서 연속일 때,

곡선 x=g(y)와 y축 및 두 직선 y=c, y=d로 둘러싸인 부분의 넓이 S는

$$S = \int_{c}^{d} |g(y)| dy$$





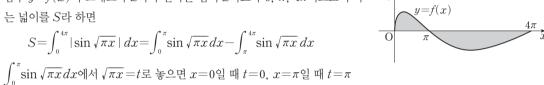
정의역이 $\{x \mid 0 \le x \le 4\pi\}$ 인 함수 $f(x) = \sin \sqrt{\pi x}$ 에 대하여 곡선 y = f(x)와 x축으로 둘러싸인 부분의 넓이를 구하시오.

풀이 (전략) $0 \le x \le 4\pi$ 에서 곡선 y = f(x)와 x축이 만나는 점의 x좌표를 구하고, 정적분을 이용하여 넓이를 구한다.

풀이 $f'(x) = \cos\sqrt{\pi x} \times \frac{\pi}{2\sqrt{\pi x}}$ 이고, f'(x) = 0에서 $\sqrt{\pi x} = \frac{\pi}{2}$ 또는 $\sqrt{\pi x} = \frac{3\pi}{2}$ 이므로 $x = \frac{\pi}{4}$ 또는 $x = \frac{9\pi}{4}$ 함수 f(x)의 증가와 감소를 표로 나타내면 다음과 같다.

x	0		$\frac{\pi}{4}$		$\frac{9\pi}{4}$		4π
f'(x)		+	0	_	0	+	
f(x)	0	1	극대	\	극소	1	0

함수 y=f(x)의 그래프가 x축과 만나는 점의 x좌표가 0. π . 4π 이므로 구하 는 넓이를 S라 하면



이코,
$$\frac{\pi}{2\sqrt{\pi x}} = \frac{dt}{dx}$$
, $\frac{\pi}{2t} = \frac{dt}{dx}$ 이므로 $\int_0^{\pi} \sin\sqrt{\pi x} dx = \frac{2}{\pi} \int_0^{\pi} t \sin t dt$ ①

 $\int_0^{\pi} t \sin t \, dt$ 에서 u(t) = t, $v'(t) = \sin t$ 로 놓으면 u'(t) = 1, $v(t) = -\cos t$ 이므로

$$\int_{0}^{\pi} t \sin t \, dt = \left[-t \cos t \right]_{0}^{\pi} + \int_{0}^{\pi} \cos t \, dt = \left[-t \cos t \right]_{0}^{\pi} + \left[\sin t \right]_{0}^{\pi} = \pi \qquad \cdots \cdots \odot$$

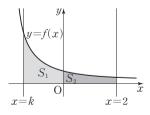
①, ①에 의하여 $\int_{-\pi}^{\pi} \sin \sqrt{\pi x} dx = \frac{2}{\pi} \times \pi = 2$ 이고, 같은 방법으로

$$\int_{\pi}^{4\pi} \sin \sqrt{\pi x} \, dx = \frac{2}{\pi} \int_{\pi}^{2\pi} t \sin t \, dt = \frac{2}{\pi} \times (-3\pi) = -6$$

 WHZHAI $S = 2 - (-6) = 8$

B 8

그림과 같이 정의역이 $\{x \mid x > -2\}$ 인 함수 $f(x) = \frac{1}{x+2}$ 에 대하여 곡선 유제 y=f(x)와 x축. y축 및 직선 x=k(-2 < k < 0)으로 둘러싸인 부분의 넓이를 S_1 이라 하고, 곡선 y=f(x)와 x축, y축 및 직선 x=2로 둘러싸인 부분의 넓이를 S_2 라 하자. $S_1:S_2=2:1$ 을 만족시키는 상수 k의



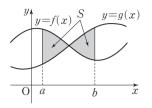
값은?

- ① $-\frac{15}{8}$ ② $-\frac{7}{4}$ ③ $-\frac{13}{8}$ ④ $-\frac{3}{2}$

3. 두 곡선으로 둘러싸인 부분의 넓이

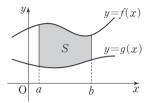
두 함수 y=f(x), y=g(x)가 닫힌구간 [a,b]에서 연속일 때, 두 곡선 y=f(x), y=g(x) 및 두 직선 x=a, x=b로 둘러싸인 부분의 넓이 S는

$$S = \int_a^b |f(x) - g(x)| dx$$



- [설명] 두 함수 f(x), g(x)가 닫힌구간 [a, b]에서 연속일 때, 두 곡선 y=f(x), y=g(x) 및 두 직선 x=a, x=b로 둘러 싸인 부분의 넓이 S를 각 경우로 나누어 구해 보면 다음과 같다.
 - (i) 닫힌구간 [a, b]에서 $0 \le g(x) \le f(x)$ 인 경우

$$S = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$$
$$= \int_{a}^{b} \{f(x) - g(x)\}dx$$
$$= \int_{a}^{b} |f(x) - g(x)|dx$$



(ii) 닫힌구간 [a, b]에서 $g(x) \leq f(x)$ 이고, f(x) 또는 g(x)가 음의 값을 갖는 경우

두 곡선 y=f(x), y=g(x)를 y축의 양의 방향으로 k만큼 평행이동하여 닫힌구간 [a, b]에서 $0 \le g(x) + k \le f(x) + k$ 가 되게 할 수 있다.

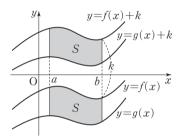
평행이동하여도 구하는 넓이 S는 변하지 않으므로

$$S = \int_{a}^{b} \{f(x) + k\} dx - \int_{a}^{b} \{g(x) + k\} dx$$

$$= \int_{a}^{b} [\{f(x) + k\} - \{g(x) + k\}] dx$$

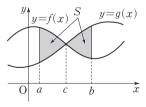
$$= \int_{a}^{b} \{f(x) - g(x)\} dx$$

$$= \int_{a}^{b} |f(x) - g(x)| dx$$



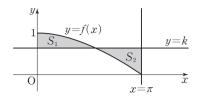
- (iii) 닫힌구간 [a, c]에서 $g(x) \le f(x)$ 이고 닫힌구간 [c, b]에서 $f(x) \le g(x)$ 인 경우
 - (i), (ii)에 의하여 구하는 넓이 S는

$$S = \int_{a}^{c} \{f(x) - g(x)\} dx + \int_{c}^{b} \{g(x) - f(x)\} dx$$
$$= \int_{a}^{c} |f(x) - g(x)| dx + \int_{c}^{b} |f(x) - g(x)| dx$$
$$= \int_{a}^{b} |f(x) - g(x)| dx$$



두 곡선으로 둘러싸인 부분의 넓이

그림과 같이 정의역이 $\{x | 0 \le x \le \pi\}$ 인 함수 $f(x) = \cos \frac{x}{2}$ 에 대하여 곡선 y=f(x)와 y축 및 직선 y=k로 둘러싸인 부분의 넓이를 S_1 이라 하고, 곡선 y=f(x)와 두 직선 y=k. $x=\pi$ 로 둘러싸인 부분의 넓이를 S_0 라 하자. $S_1 = S_2$ 를 만족시키는 상수 k의 값은? (단. 0 < k < 1)



- $\bigcirc \frac{1}{2\pi}$
- $2\frac{1}{\pi}$
- $3\frac{3}{2\pi}$
- $4\frac{2}{\pi}$
- ⑤ $\frac{5}{2\pi}$

풀이 전략

두 부분의 넓이 S_1 , S_2 를 각각 정적분으로 나타내고, 조건을 만족시키는 상수 k의 값을 구한다.

풀이 곡선 y=f(x)와 직선 y=k가 만나는 점의 x좌표를 a라 하면

$$S_1 = \int_0^a \left(\cos\frac{x}{2} - k\right) dx, \ S_2 = \int_a^\pi \left(k - \cos\frac{x}{2}\right) dx$$

$$\int_{0}^{a} \left(\cos\frac{x}{2} - k\right) dx = \int_{a}^{\pi} \left(k - \cos\frac{x}{2}\right) dx$$

$$\int_{0}^{a} \left(\cos\frac{x}{2} - k\right) dx - \int_{a}^{\pi} \left(k - \cos\frac{x}{2}\right) dx = 0$$

$$\int_{0}^{a} \left(\cos\frac{x}{2} - k\right) dx + \int_{a}^{\pi} \left(\cos\frac{x}{2} - k\right) dx = 0$$

$$\int_{0}^{\pi} \left(\cos\frac{x}{2} - k\right) dx = 0$$

$$\left[2\sin\frac{x}{2} - kx\right]_{0}^{\pi} = 0$$

따라서 $2-k \times \pi = 0$ 에서 $k = \frac{2}{\pi}$

4

정답과 풀이 48쪽

[21011-0149]

두 함수 $f(x) = x^2$, $g(x) = 3\sqrt{3x}$ 에 대하여 두 곡선 y = f(x), y = g(x)로 둘러싸인 부분의 넓이를 유제 구하시오

[21011-0150]

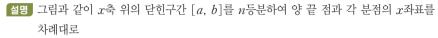
- 함수 $f(x)=\ln{(x+1)}$ 에 대하여 곡선 y=f(x)와 y축 및 직선 $y=\ln{2}$ 로 둘러싸인 부분의 넓이가 유제 ln k일 때, k의 값은?

 - $(1)\frac{e}{4}$ $(2)\frac{e}{2}$
- ③ e
- (4) 2e
- (5) 4e

4. 입체도형의 부피

닫힌구간 [a, b]에서 x좌표가 x인 점을 지나고 x축에 수직인 평면으로 자른 단면의 넓이가 S(x)이고, 함수 S(x)가 닫힌구간 [a, b]에서 연속일 때, 이 입체도형의 부피 V는

$$V = \int_{a}^{b} S(x) dx$$



$$a=x_0, x_1, x_2, \dots, x_{n-1}, x_n=b$$

라 하고, 닫힌구간 $[x_{k-1}, x_k]$ 의 길이를 Δx 라 하면

$$\Delta x = \frac{b-a}{n}, x_k = a + k \Delta x$$
 (단, $k=1, 2, 3, \dots, n$)

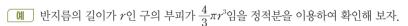
이때 각 점 x_{\flat} 에서 x축에 수직인 평면으로 자른 단면의 넓이 $S(x_{\flat})$ 를 밑면의 넓이로 하고 높이가 Δx 인 n개의 기둥의 부피의 합을 V_n 이라 하면

$$V_n = S(x_1) \Delta x + S(x_2) \Delta x + S(x_3) \Delta x + \dots + S(x_n) \Delta x$$

= $\sum_{k=1}^{n} S(x_k) \Delta x$

입체도형의 부피 V는 정적분과 급수의 관계에 의하여

$$V = \lim_{n \to \infty} V_n = \lim_{n \to \infty} \sum_{k=1}^n S(x_k) \Delta x$$
$$= \int_a^b S(x) dx$$



그림과 같이 반지름의 길이가 r인 반구의 밑면과 평행하고 밑면으로부터 높이가 x인 평면으로 자른 반구의 단면의 넓이를 S(x)라 하면

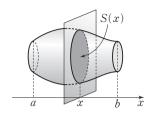
반구의 단면은 반지름의 길이가 $\sqrt{r^2-x^2}$ 인 원이므로

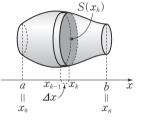
$$S(x) = \pi (\sqrt{r^2 - x^2})^2$$

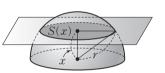
= $\pi (r^2 - x^2)$

따라서 반지름의 길이가 r인 구의 부피를 V라 하면

$$\begin{split} \frac{1}{2}V &= \int_0^r S(x) \, dx \\ &= \pi \int_0^r \left(r^2 - x^2 \right) \, dx \\ &= \pi \Big[\, r^2 x - \frac{1}{3} x^3 \Big]_0^r \\ &= \pi \times \Big(r^3 - \frac{1}{3} r^3 \Big) \\ &= \frac{2}{3} \pi r^3 \end{split}$$







입체도형의 부피

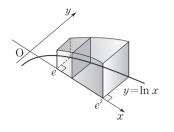
그림과 같이 곡선 $y=\ln x$ 와 x축 및 두 직선 x=e, $x=e^2$ 으로 둘러싸인 부분을 밑면으로 하고. x축에 수직인 평면으로 자른 단면이 모두 정사각형인 입체도형의 부피는?

② e(2e-1)

(3) $2e^2$

(4) e(2e+1)

⑤ 2e(e+1)



풀이 전략

x축에 수직인 평면으로 자른 단면의 넓이를 구하고, 정적분을 이용하여 입체도형의 부피를 구한다.

풀이 $e \le t \le e^2$ 인 실수 t에 대하여 직선 x = t를 포함하고 x축에 수직인 평면으로 자른 단면의 넓이를 S(t)라 하면 $S(t) = (\ln t)^2$

구하는 입체도형의 부피를 V라 하면

$$V = \int_{e}^{e^{z}} S(t)dt = \int_{e}^{e^{z}} (\ln t)^{2} dt$$

 $\int_{e^{t}}^{e^{t}} (\ln t)^{2} dt$ 에서 $u(t) = (\ln t)^{2}$, v'(t) = 1로 놓으면 $u'(t) = 2 \ln t \times \frac{1}{t}$, v(t) = t이므로

$$\int_{e}^{e^{2}} (\ln t)^{2} dt = \left[t(\ln t)^{2} \right]_{e}^{e^{2}} - 2 \int_{e}^{e^{2}} \ln t \, dt$$

이때 $\int_{a}^{e^{t}} \ln t \, dt$ 에서 $u_{1}(t) = \ln t$, $v_{1}'(t) = 1$ 로 놓으면 $u_{1}'(t) = \frac{1}{t}$, $v_{1}(t) = t$ 이므로

$$\int_{e}^{e^{t}} \ln t \, dt = \left[t \ln t \right]_{e}^{e^{t}} - \int_{e}^{e^{t}} dt = \left[t \ln t \right]_{e}^{e^{t}} - \left[t \right]_{e}^{e^{t}} = e^{t}$$

따라서

$$V = \left[t(\ln t)^2\right]_e^{e^2} - 2e^2 = (4e^2 - e) - 2e^2$$

= $2e^2 - e = e(2e - 1)$

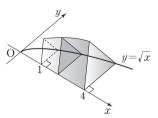
2

[21011-0151]

그림과 같이 곡선 $y=\sqrt{x}$ 와 x축 및 두 직선 x=1, x=4로 둘러싸인 부 분을 밑면으로 하고. x축에 수직인 평면으로 자른 단면이 모두 정삼각형

인 입체도형의 부피가 $\frac{q}{p}\sqrt{3}$ 이다. p+q의 값을 구하시오.

(단, p)와 q는 서로소인 자연수이다.)



5. 좌표평면 위를 움직이는 점이 움직인 거리

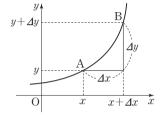
좌표평면 위를 움직이는 점 P의 시각 t에서의 위치 (x, y)가

$$x=f(t), y=g(t)$$

일 때. t=a에서 t=b까지 점 P가 움직인 거리 s는

$$s = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
$$= \int_a^b \sqrt{\{f'(t)\}^2 + \{g'(t)\}^2} dt$$

설명 점 P가 움직인 거리는 시각 t ($a \le t \le b$)의 함수이므로 s = s(t)로 나타내기로 하자. 그림과 같이 시각 t에서 점 A(x, y)에 있던 점 P가 시각 $t + \Delta t$ 에서 점 $B(x+\Delta x, y+\Delta y)$ 로 이동했을 때 s의 증분 Δs 는 Δt 가 충분히 작으면 $\sqrt{(\Delta x)^2 + (\Delta y)^2}$ 에 가까워지므로



$$s'(t) = \frac{ds}{dt} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$
$$= \lim_{\Delta t \to 0} \sqrt{\left(\frac{\Delta x}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2}$$
$$= \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

따라서 시각 t=a에서 t=b까지 점 P가 움직인 거리 s는

$$s = s(b) - s(a) = \left[s(t) \right]_a^b$$
$$= \int_a^b \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} dt$$

6. 곡선의 길이

(1) 곡선 위의 점 (x, y)가 각각 x=f(t), y=g(t)이고 겹쳐지는 부분이 없을 때. $a \le t \le b$ 에서 이 곡선의 길이 l은

$$l = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
$$= \int_a^b \sqrt{\{f'(t)\}^2 + \{g'(t)\}^2} dt$$

(2) $a \le x \le b$ 에서 곡선 y = f(x)의 길이 l은

$$l = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$
$$= \int_{a}^{b} \sqrt{1 + \{f'(x)\}^{2}} dx$$

좌표평면 위를 움직이는 점이 움직인 거리

좌표평면 위를 움직이는 점 P의 시각 t ($t \ge 0$)에서의 위치 (x, y)가

 $x=k\sin t-2\cos t$, $y=k\cos t+2\sin t$

일 때. t=1에서 t=3까지 점 P가 움직인 거리는 10이다. k^2 의 값을 구하시오. (단. k는 상수이다.)

풀이 전략 시각 t=a에서 t=b까지 점 P가 움직인 거리 s는 $s=\int_a^b\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}dt$ 임을 이용한다.

물이
$$x=k\sin t-2\cos t$$
에서 $\frac{dx}{dt}=k\cos t+2\sin t$

 $y = k\cos t + 2\sin t \text{ and } t \frac{dy}{dt} = -k\sin t + 2\cos t$

$$\begin{split} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} &= \sqrt{(k\cos t + 2\sin t)^2 + (-k\sin t + 2\cos t)^2} \\ &= \sqrt{k^2(\cos^2 t + \sin^2 t) + 4(\sin^2 t + \cos^2 t)} \\ &= \sqrt{k^2 + 4} \end{split}$$

따라서 t=1에서 t=3까지 점 P가 움직인 거리를 s라 하면

$$s = \int_{1}^{3} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = \int_{1}^{3} \sqrt{k^{2} + 4} dt$$
$$= \left[\sqrt{k^{2} + 4} t\right]_{1}^{3} = 2\sqrt{k^{2} + 4}$$

즉. $2\sqrt{k^2+4}=10$ 에서 $k^2+4=25$ 이므로 $k^2=21$

21

[21011-0152]

함수 $f(x)=\frac{e^{2x}+e^{-2x}}{4}$ 에 대하여 $0\leq x\leq \ln 2$ 에서 곡선 y=f(x)의 길이는?

- ① $\frac{7}{8}$ ② $\frac{15}{16}$ ③ 1 ④ $\frac{17}{16}$ ⑤ $\frac{9}{8}$

[21011-0153]

유제

좌표평면 위를 움직이는 점 P의 시각 t ($t \ge 0$)에서의 위치 (x, y)가

$$x=4e^{t}, y=2t-e^{2t}$$

일 때, $t=\ln 2$ 에서 $t=\ln 4$ 까지 점 P가 움직인 거리는 $m+2\ln 2$ 이다. 정수 m의 값을 구하시오.

- $\lim_{n\to\infty} \left(\sqrt{\frac{1}{n^3}} + \sqrt{\frac{2}{n^3}} + \sqrt{\frac{3}{n^3}} + \cdots + \sqrt{\frac{n}{n^3}} \right)$ 의 값은?

 - ① $\frac{1}{2}$ ② $\frac{7}{12}$ ③ $\frac{2}{3}$ ④ $\frac{3}{4}$

- $\lim_{n\to\infty} \left(\frac{1}{n+2} + \frac{1}{n+4} + \frac{1}{n+6} + \dots + \frac{1}{n+2n} \right) = \ln p$ 일 때, p의 값은?
 - (1) $\sqrt{2}$ (2) $\sqrt{3}$ (3) 2

- $(4)\sqrt{5}$
- \bigcirc $\sqrt{6}$

- 3 함수 $f(x)=2-\sqrt{x}$ 에 대하여 곡선 y=f(x)와 x축 및 y축으로 둘러싸인 부분의 넓이는?
- ① $\frac{8}{3}$ ② 3 ③ $\frac{10}{3}$ ④ $\frac{11}{3}$

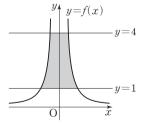
[21011-0157]

정의역이 $\{x | 0 \le x \le 2\pi\}$ 인 함수 $f(x) = \sin 2x$ 에 대하여 곡선 y = f(x)와 x축으로 둘러싸인 부분의 넓이를 구하시오.

- 그림과 같이 함수 $f(x)=\frac{1}{x^2}$ 에 대하여 곡선 y=f(x)와 두 직선 $y=1,\ y=4$ 로 5 둘러싸인 부분의 넓이는?
 - ① $\frac{11}{3}$
- 2 4

 $3\frac{13}{3}$

- $4 \frac{14}{3}$
- ⑤ 5



- 두 함수 $f(x)=e^x$, $g(x)=e^{2x}$ 에 대하여 두 곡선 y=f(x), y=g(x)와 직선 $x=\ln 2$ 로 둘러싸인 부분의
- ① $\frac{1}{4}$ ② $\frac{1}{2}$ ③ $\frac{3}{4}$
 - **4** 1
- $(5)\frac{5}{4}$

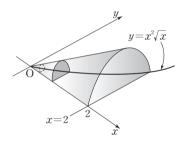
함수 $f(x)=e^{\frac{x}{2}}$ 에 대하여 곡선 y=f(x) 위의 점 (1, f(1))에서의 접선을 l이라 하자. 곡선 y=f(x)와 y축 및 직선 l로 둘러싸인 부분의 넓이가 $\frac{q}{p}\sqrt{e}-2$ 일 때, p+q의 값을 구하시오.

(단, b 와 q 는 서로소인 자연수이다.)

[21011-0161]

그림과 같이 곡선 $y=x^2\sqrt{x}$ 와 x축 및 직선 x=2로 둘러싸인 부분을 밑면으 8 로 하고. x축에 수직인 평면으로 자른 단면이 모두 반원인 입체도형의 부피 느?

 $4\frac{5\pi}{3}$ $5\frac{11\pi}{6}$



9 좌표평면 위를 움직이는 점 P의 시각 t $(t \ge 0)$ 에서의 위치 (x, y)가 $x=e^t \sin t$, $y=e^t \cos t$

일 때, $t=\ln 2$ 에서 $t=\ln 3$ 까지 점 P가 움직인 거리는?

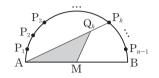
- ① $\frac{\sqrt{2}}{3}$ ② $\frac{\sqrt{2}}{2}$ ③ $\sqrt{2}$ ④ $2\sqrt{2}$
- (5) $3\sqrt{2}$

- $\mathbf{10} \quad \text{함수 } f(x) = \frac{2}{3}(x+2)\sqrt{x+2} \text{에 대하여 } 6 \leq x \leq 13 \text{에서 곡선 } y = f(x) \text{의 길이는?}$
 - ① $\frac{71}{3}$ ② $\frac{74}{3}$ ③ $\frac{77}{3}$ ④ $\frac{80}{3}$ ⑤ $\frac{83}{3}$

- $\lim_{n\to\infty} \frac{1}{n^2} \left(e^{1+\frac{1}{n}} + 2e^{1+\frac{2}{n}} + 3e^{1+\frac{3}{n}} + \cdots + ne^{1+\frac{n}{n}} \right)$ 의 값은?
 - ① e-1
- (2) e
- (3) e+1
- (4) 2e
- (5) 2e+1

[21011-0165]

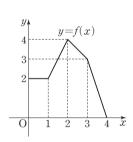
그림과 같이 \overline{AB} =4인 선분 \overline{AB} 를 지름으로 하는 반원의 호 \overline{AB} 를 \overline{n} 등분하는 점을 점 A에 가까운 점부터 차례로 P_1 , P_2 , P_3 , \cdots , P_{n-1} 이라 하자, 선분 AB의 중점을 M이라 하고, 각각의 자연수 $k{=}1,\,2,\,3,\,\cdots,\,n{-}1$ 에 대하여 선분 AP_k 를 3:1로 내분하는 점을 Q_k 라 할 때, 삼각형 AMQ_k 의 넓이를 S(k)라 하자.



 $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n-1}S(k)$ 의 값은?

[21011-0166]

3 정의역이 $\{x | 0 \le x \le 4\}$ 인 함수 f(x)에 대하여 함수 y = f(x)의 그래프가 그림과 같다. $\int_0^1 x f(2x^2+1) dx = \frac{q}{p}$ 일 때, p+q의 값을 구하시오. (단, 함수 y=f(x)의 그래프는 네 개의 선분으로 이루어져 있고. p와 q는 서로소인 자연수이다.)



- 정의역이 $\left\{x \middle| 0 \le x < \frac{\pi}{2} \right\}$ 인 두 함수 $f(x) = 3\sin x$, $g(x) = \tan x$ 에 대하여 두 곡선 y = f(x), y = g(x)로 둘러싸인 부분의 넓이는?
- ① $\ln \frac{e^2}{6}$ ② $\ln \frac{e^2}{5}$ ③ $\ln \frac{e^2}{4}$ ④ $\ln \frac{e^2}{3}$ ⑤ $\ln \frac{e^2}{2}$

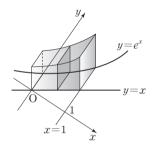
함수 $f(x) = \frac{\ln x}{x}$ 와 자연수 n에 대하여 곡선 y = f(x)와 x축 및 두 직선 $x = e^n$, $x = e^{n+1}$ 으로 둘러싸인 부분의 넓이를 S(n)이라 하자. $\sum_{k=1}^{10} S(2k-1)$ 의 값을 구하시오.

- 함수 $f(x)=xe^{-\frac{x^2}{2}}$ 에 대하여 곡선 y=f(x)와 직선 $y=\frac{1}{\sqrt{e}}x$ 로 둘러싸인 부분의 넓이가 $p-\frac{3}{\sqrt{e}}$ 일 때, p의 값은?
 - 1)2

- $2\frac{9}{4}$ $3\frac{5}{2}$ $4\frac{11}{4}$
- (5) 3

그림과 같이 곡선 $y=e^x$ 과 y축 및 두 직선 y=x, x=1로 둘러싸인 부분을 밑면 으로 하고. x축에 수직인 평면으로 자른 단면이 모두 정사각형인 입체도형의 부 피는 pe^2+q 이다. 6(p-q)의 값을 구하시오.

 $(\text{ 단, } p, q \text{ 는 유리수이고, } e^2 \text{ 은 무리수이다. })$



[21011-0171]

- 좌표평면 위를 움직이는 점 P의 시각 t $(t \ge 0)$ 에서의 위치 (x, y)가 $x = \frac{1}{2}e^{2t} kt$, $y = 2\sqrt{k}e^t$ 일 때, t = 1에 8 서 t=2까지 점 P가 움직인 거리는 $\frac{1}{2}e^4$ 이다. 양수 k의 값은?

- ① $\frac{2}{e^2}$ ② $\frac{2}{e}$ ③ 1 ④ $\frac{1}{2}e$

$$\lim_{n\to\infty} \ln \frac{\sqrt[n]{(n+1)\times(n+2)\times(n+3)\times\cdots\times(n+n)}}{n}$$
의 값은?

- ① $\ln \frac{1}{e}$ ② $\ln \frac{2}{e}$ ③ $\ln \frac{3}{e}$ ④ $\ln \frac{4}{e}$ ⑤ $\ln \frac{5}{e}$

[21011-0173]

정의역이 $\{x \mid 0 \le x \le \pi\}$ 인 두 함수 $f(x) = x \sin x$, $g(x) = \frac{1}{2}x$ 에 대하여 곡선 y = f(x)와 직선 y = g(x)로 둘러싸인 부분 중 부등식 $f(x) \ge g(x)$ 를 만족시키는 부분의 넓이가 $p\sqrt{3}\pi + q\pi^2$ 이다. $\frac{p^2}{a^2}$ 의 값을 구하시오. (F, b, a는 유리수이고, π^2 은 무리수이다)

정의역이 $\{x \mid -3 < x < 3\}$ 인 함수 $f(x) = \frac{\ln(3+x) + \ln(3-x)}{2}$ 에 대하여 곡선 y = f(x)와 x축 및 두 직선 x=-2, x=2로 둘러싸인 부분의 넓이가 $m \ln 5-4$ 이다. 자연수 m의 값을 구하시오.

[21011-0175]

정의역이 $\{x|x>0\}$ 이고 모든 양의 실수 x에 대하여 f'(x)>0인 함수 f(x)가 다음 조건을 만족시킨다.

(7) f(1) = 1, f(3) = 2

(나) 함수 y=f(x)의 그래프와 x축 및 두 직선 x=1, x=3으로 둘러싸인 부분의 넓이는 $\frac{7}{2}$ 이다.

함수 f(x)의 역함수를 g(x)라 할 때, $\int_1^9 f'(\sqrt{x})\,dx + \int_1^4 \frac{g(\sqrt{x})}{\sqrt{x}}dx$ 의 값을 구하시오.

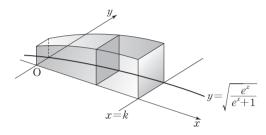
○ 대표 기출 문제

출제 경향

8-1

정적분과 급수의 관계를 이용하는 문제와 정적분을 활용하여 곡선으로 둘러싸인 부분의 넓이, 입체도형의 부피를 구하는 문제가 출제되고 있다.

그림과 같이 양수 k에 대하여 곡선 $y=\sqrt{\frac{e^x}{e^x+1}}$ 과 x축, y축 및 직선 x=k로 둘러싸인 부분을 밑면으로 하고 x축에 수직인 평면으로 자른 단면이 모두 정사각형인 입체도형의 부피가 $\ln 7$ 일 때, k의 값은? [3점]



- ① ln 11
- ② ln 13
- ③ ln 15
- ④ ln 17
- ⑤ ln 19

2020학년도 대수능

(출제 의도) 정적분을 이용하여 입체도형의 부피를 구할 수 있는지를 묻는 문제이다.

풀이 $0 \le t \le k$ 인 실수 t에 대하여 직선 x = t를 포함하고 x축에 수직인 평면으로 자른 단면의 넓이를 S(t)라 하면

$$S(t) = \left(\sqrt{\frac{e^t}{e^t + 1}}\right)^2 = \frac{e^t}{e^t + 1}$$

이므로 구하는 입체도형의 부피는

$$\int_{0}^{k} S(t)dt = \int_{0}^{k} \frac{e^{t}}{e^{t} + 1} dt$$

$$= \int_{0}^{k} \frac{(e^{t} + 1)'}{e^{t} + 1} dt$$

$$= \left[\ln |e^{t} + 1| \right]_{0}^{k}$$

$$= \ln (e^{k} + 1) - \ln 2$$

$$= \ln \frac{e^{k} + 1}{2}$$

따라서 주어진 입체도형의 부피가 $\ln 7$ 이므로 $\ln \frac{e^k+1}{2} = \ln 7$ 에서

$$\frac{e^k+1}{2}$$
=7, e^k =13

즉, k=ln 13

2

고2~N수 수능 집중 로드맵

과목	수능	등 입문	기출 / 연립		연계+9	면계 보완	>	고난도	D *(모의고사
국어	수능 감 (感)잡기				년계교재의 거 어휘					
영어	뉴수능 스타트	강의노트 수능개념	수능 기출의 미래	VOC 수능약 Vaccii	변계교재의 CA 1800 연계 기출 ne VOCA	수능특강 사용설명서	수능연계완성 3/4주 특강 고난도 · 신유형		-	FINAL 실전모의고사
수학	수능특강 Light		A L E 710		연계	수능특강 연계 기출			_ _	만점마무리 봉투모의고사
사회			수능특강Q 미니모의고사	- 수	능특강	수능완성 사용설명서			3	고난도 시크릿X 봉투모의고사
과학				- 11 '	수능완성					
과목		시리즈명			특징			수준		영역
수능 입문	수	능 감(感) 잡기	동일	동일 개념의 내신과 수능 문항 비교로 수능 입문						국/수/영
	Ļ	구수능 스타트	202	2022학년도 수능 평가원 예시문항 최초 분석						국/수/영
	수능특강 Light		-	수능 연계교재 학습 전 연계교재 입문서				•		국/영
		수능개념		EBSi 대표 강사들과 함께하는 수능 개념 다지기				•		전영역
기출/연습	수능 기출의 미래			올해 수능에 딱 필요한 문제만 선별한 기출 문제집						전영역
	수능특	수능특강Q 미니모의고사		매일 15분으로 연습하는 고퀄리티 미니모의고사						전영역
		수능특강		최신 수능 경향과 기출 유형을 분석한 종합 개념서				•		전영역
연계 + 연계 보완	수능특강 사용설명서			수능 연계교재 수능특강 지문 · 자료 · 문항 분석				•		전영역
	수능	등특강 연계 기출		수능특강 수록 작품과 지문과 연관된 기출문제 학습						국/영
	人上	수능완성 완성 사용설명서		유형 분석과 실전모의고사로 단련하는 문항 연습 수능 연계교재 수능완성 국어 · 영어 지문 분석						전영역 국/영
		관광 시흥글광시 계교재의 국어 어희		수능 지문과 문항 이해에 필요한 어휘 학습서						국/ 8
	수능연계교재의 VOCA 1800			수능특강과 수능완성의 필수 중요 어휘 1800개 수록						영어
	수능연계 기출 Vaccine VOCA 2200			수능-EBS 연계 및 평가원 최다 빈출 어휘 선별 수록					영어	
고난도	수능연계완성 3/4주 특강		't	단기간에 끝내는 수능 킬러 문항 대비서					_	국/수/영/과
	수능의 7대 함정		아깝게	아깝게 틀리기 쉬운 영역별 수능 함정 문제 유형 분석					•	국/수/영/사/과
모의고사	FINAL 실전모의고사		수능	수능 동일 난도의 최다 분량, 최다 과목 모의고사					•	전영역
	만점마.	무리 봉투모의고서	나 실제	실제 시험지 형태 + OMR카드 실전 훈련 모의고사					•	전영역
	고난도 시	크릿X 봉투모의고	그사 제	제대로 어려운 고퀄리티 최고난도 모의고사					_	국/수/영