

수학 영역

○ 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
○ 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.
변한 것은 내가 아닌 삶의 무게
○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호,
문형(홀수/짝수), 답을 정확히 표시하시오.
○ 단답형 답의 숫자에 '0'이 포함되면 그 '0'도 답란에 반드시 표시하시오.
○ 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오.
배점은 2점, 3점 또는 4점입니다.
○ 계산은 문제지의 여백을 활용하시오.

※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.
○ 공통과목
○ 선택과목
│

※ 시험이 시작되기 전까지 표지를 넘기지 마시오.

MIS X 소우주

2024학년도 수능 대비 MIS X 소우주 모의고사 수학 영역

제 2 교시

1

5지선다형	3. 실수 전체의 집합에서 연속인 함수 $f(x)$ 가								
. ³ √2 ×4 ⁵ ⁶ 의 값은? [2점]	$\lim_{x \to 3} f(x) = 2 + \frac{6}{7}f(3)$								
$(1) 2 (2) 2\sqrt{2} (3) 4 (4) 4\sqrt{2} (5) 8$	를 만족시킬 때, <i>f</i> (3)의 값은? [3점]								
	① 12 ② 14 ③ 16 ④ 18 ⑤ 20								
. 함수 $f(x) = x^3 - 9x^2 + 7x + 1$ 에 대하여 $\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$ 의	4. 등차수열 $\{a_n\}$ 에 대하여								
값은? [2점] ① -20 ② -19 ③ -18 ④ -17 ⑤ -16	$a_2 + a_5 = 1$, $\sum_{n=2}^{6} a_n = 2$								
	일 때, a ₁ 의 값은? [3점]								
	$ 1 1 2 \frac{3}{2} 3 2 4 \frac{5}{2} 5 3 $								

2				수학	영역				
5. $\frac{3}{2}\pi < \theta$ $\cos \theta$ 의 값	< 2π인 θ에 디 는? [3점]	l하여 sinθ =	- <u>12</u> 일때, <u>13</u> 일때,			n}의 첫째항부 년수 <i>n</i> 에 대하여		지의 합을 <i>S</i> _n 여	이라 하자.
	2 -		$(3) - \frac{5}{12}$		S_n :	$=\log_2\left(1+\frac{1}{n}\right)$			
$(4) - \frac{5}{13}$	(5) -	$-\frac{12}{13}$			일 때, <mark>_</mark>	$\sum_{n=1}^{6} (S_n + a_{n+1})$	의 값은? [37	셤]	
					① 1	② 2	3 3	④ 4	(5) 5
C 하스 #(~	$x = 2x^3 - 9x^2 - 3x^2 - 3x^$	94~ 이 그대기	나카 그소가이	<u>키</u> ㄴ 9 [974]					
 9 → f(x 1) 27 	(2) - 2x - 9x	- 24 <i>t</i> 의 의 첫쇼 ③ 125	④ 216	イモ (15名) 5 343					
ي		U 10	<u> </u>	<u>ي</u> کې کې					

시각 $t(t \ge 0)$ 에서의 속도 $v(t)$ 가 $v(t) = 3t^2 - 2t - 1$ $g(x) = f(x) - x^2 - 1 $	수학	영역 :
 9. 동비수열 {a_n}에 대하여 내 개의 수 a₂, a₃, 15, a₅ 가 이 순서대로 공자가 양수인 등자수열을 이불 때, a_n의 값은? 	시각 $t(t \ge 0)$ 에서의 속도 $v(t)$ 가 $v(t) = 3t^2 - 2t - 1$ 이다. 시각 $t = 4$ 에서 점 P의 위치는? [3점]	가 오직 $x=0$ 에서만 <u>미분가능하지 않을</u> 때, 곡선 $y=g(x)$ 와 x축으로 둘러싸인 부분의 넓이는? [4점]
$a_2, a_3, 15, a_5$ 가 이 순서대로 공차가 양수인 등차수열을 이룰 때, a_6 의 값은?		
[4점]	$a_2, a_3, 15, a_5$	
$ (1) - 6 \qquad (2) 12 \qquad (3) - 24 \qquad (4) 36 \qquad (5) - 48 $		

11. 최고차항의 계수가 1인 삼차함수 f(x)가 다음 조건을 만족시킨다.

곡선 y = f(x) 위의 점 (3, f(3))에서의 접선의 방정식은 y = f'(5)(x-6) + 6이다.

f(0) = 0 일 때, f'(4) 의 값은? [4점]

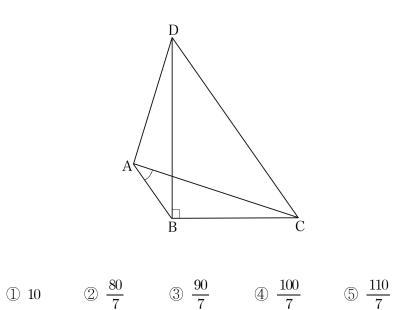
 $(1) - 12 \qquad (2) - 11 \qquad (3) - 10 \qquad (4) - 9 \qquad (5) - 8$

12. 두 양수 a(a > 1), b에 대하여 x축 위의 점 (-6, 0)을
 지나고 기울기가 √3/3 인 직선이 곡선

 $y = \log_a(bx + 1)$

과 만나는 두 점을 x좌표가 작은 순서대로 A, B라 하자. 선분 AB를 지름으로 하는 원을 C_1 , 점 A에서 원 C_1 에 접하고 원점을 지나는 원을 C_2 라 하자. 두 원 C_1 , C_2 가 모두 x축에 접할 때, $a^{\sqrt{b}}$ 의 값은? [4점]

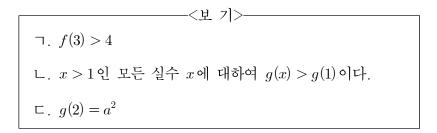
(1) 2 (2)
$$2^{\frac{2}{3}}$$
 (3) $2^{\frac{1}{3}}$ (4) $2^{\frac{1}{6}}$ (5) $2^{\frac{1}{9}}$


4

13. $\overline{AB} = 5$, $\cos(\angle BAD) = -\frac{3}{5}$ 인 사각형 ABCD가 있다. 직선 AB와 직선 CD가 서로 평행하고

$$\overline{\mathrm{BC}} = \overline{\mathrm{CD}} \times \sin(\angle \mathrm{BAC}), \ \angle \mathrm{CBD} = \frac{\pi}{2}$$

일 때, 선분 AC의 길이는? [4점]


14. 최고차항의 계수가 a(a ≠ 0)이고 f(1) = 0, f(2) = 2 인
 삼차함수 f(x)에 대하여 함수 g(x)를

$$g(x) = \begin{cases} \frac{1}{2} \int_{x}^{x+2} \{|f(t)| + f(t)\} dt & (x \ge 1) \\ a & (x < 1) \end{cases}$$

라 하자. 함수 g(x)가 실수 전체의 집합에서 연속이고

 $\{x \,|\, g(x) \le 4\} = \{x \,|\, x \le 1\}$

일 때, <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

•	
15. 함수	단답형
$f(x) = 4\sin ax + b$	16. 부등식 $\log_2 x + \log_2(x+1) \le 1$ 을 만족시키는 정수 x 의
가 다음 조건을 만족시키도록 하는 두 실수 a, b에 대하여 모든 a+b의 값을 작은 수부터 크기순으로 나열한 것을	개수를 구하시오. [3점]
(가) 모든 실수 x 에 대하여 $f(x) = f\left(x + \frac{2}{3}\pi\right)$ 이다.	
(나) 구간 $\left(0, \frac{2}{3}\pi\right]$ 에서 방정식 $ f(x) = 2$ 의 서로 다른	
실근의 개수는 3이다.	
1 28 2 30 3 32 4 34 5 36	
	17. 다항함수 $f(x)$ 에 대하여 함수 $g(x)$ 를
	$g(x) = x^2 f(x)$
	라 하자. 곡선 $y = f(x)$ 위의 점 $(1, f(1))$ 에서의 접선의 방정식이 $y = 2x - 1$ 일 때, $g'(1)$ 의 값을 구하시오. [3점]

18. 수열 $\{a_n\}$ 에 대하여

$$\sum_{n=1}^{5} na_n = 10, \ \sum_{n=1}^{5} (a_n - n)^2 = 100$$

일 때, $\sum_{n=1}^5 (a_n)^2$ 의 값을 구하시오. [3점]

20. x = 0에서 극대인 삼차함수 f(x)에 대하여 함수

$$g(x) = \begin{cases} x & (f'(x) > 0) \\ f(x) & (f'(x) \le 0) \end{cases}$$

가 실수 전체의 집합에서 정의된 역함수 h(x)를 갖는다. 함수 h(x)가 극댓값 2를 가질 때, f(5)의 값을 구하시오. [4점]

19. 최고차항의 계수가 1인 삼차함수 f(x)에 대하여

$$\lim_{x \to 2} \frac{|f(x) - 2|}{x - 2} = f'(4)$$

일 때, f(6)의 값을 구하시오. [3점]

21. 다음 조건을 만족시키는 모든 수열 $\{a_n\}$ 에 대하여

 $\sum_{n=1}^{10} |a_n|$ 의 최댓값을 구하시오. [4점]

 $(7) a_1 + a_{10} = 0$

(나) 모든 자연수
$$n$$
에 대하여 $\sum_{k=1}^{n} a_k = \frac{(a_n + 2)^2}{8}$ 이다.

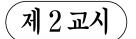
22. 최고차항의 계수가 2인 삼차함수 f(x)가 다음 조건을 만족시킨다.

방정식 $f(x) = x^2$ 은 서로 다른 세 실근 $\alpha_1, \alpha_2, 5$ 를 갖고 $\alpha_1 + \alpha_2 = 4$ 이다.

두 곡선 $y = f(x), y = x^{2}$ 과 y축으로 둘러싸인 부분의 넓이를 S_{1} , 두 곡선 $y = f(x), y = x^{2}$ 으로 둘러싸인 두 부분의 넓이를 각각 S_{2}, S_{3} 이라 하자.

 $S_1 = \left|S_2 - S_3\right|$

일 때, f(2)의 값을 구하시오. (단, $0 < \alpha_1 < 3 < \alpha_2 < 5$) [4점]

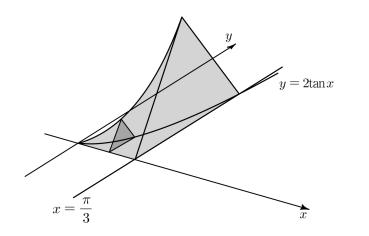


* 확인 사항

 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.

2024학년도 수능 대비 MIS X 소우주 모의고사 수학 영역(미적분)

1


5지선	신다형					24.	$\sin 2lpha$ =	$=\frac{4}{5}$,	$\cos 2\beta$ =	$=\frac{15}{17}$	일 때	, $\cos^2 \phi$	$\alpha + \sin \alpha$	$^{2}\beta$ 의	최솟깂	<u>e</u> ?
23. 곡선 :	$3x^2 + 2xy = y$	/ ² 위의 점 ((2,6)에서의	접선의 기울												[3점]
					[2점]	1	$\frac{16}{85}$	2	$\frac{18}{85}$	3	$\frac{4}{17}$	4	$\frac{22}{85}$	5	$\frac{24}{85}$	
① 3	2 4	③ 6	④ 9	5 12												

수학 영역(미적분)

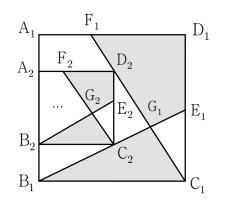
25. 그림과 같이 곡선 $y = 2\tan x$ 와 $x \stackrel{+}{\overset{-}{\overset{-}{\overset{-}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}}{\overset{-}{\overset{-}}{\overset{-}}{\overset{-}}{\overset{-}}{\overset{-}}{\overset{-}{\overset{-}}$

둘러싸인 부분을 밑면으로 하는 입체도형이 있다. 이 입체도형을 *x* 축에 수직인 평면으로 자른 단면이 모두 정삼각형일 때, 이 입체도형의 부피는? [3점]

(1)
$$\sqrt{3} - \frac{\pi}{3}$$
 (2) $3 - \frac{\pi}{3}$ (3) $3 - \frac{\sqrt{3}}{3}\pi$
(4) $3\sqrt{3} - \frac{\sqrt{3}}{3}\pi$ (5) $3\sqrt{3} - \pi$

26. 양수 t에 대하여 x = 0에서 x = 1까지 곡선

$$y = \frac{e^{tx}}{2} + \frac{1}{2t^2 e^{tx}}$$


의 길이를 f(t)라 할 때, $\lim_{t\to 0^+} tf(t)$ 의 값은? [3점]

수학 영역(미적분)

27. 그림과 같이 한 변의 길이가 6인 정사각형 A₁B₁C₁D₁이 있다. 선분 C₁D₁의 중점을 E₁, 선분 A₁D₁을 1:2로 내분하는 점을 F₁이라 하자. 선분 B₁E₁이 선분 C₁F₁과 만나는 점을 G₁이라 할 때, 사각형 F₁G₁E₁D₁의 넓이를 a₁, 삼각형 B₁C₁G₁의 넓이를 b₁이라 하자. 선분 A₁B₁ 위의 두 점 A₂, B₂와 선분 B₁G₁ 위의 점 C₂, 선분 G₁F₁ 위의 점 D₂를 사각형 A₂B₂C₂D₂가 정사각형이 되도록 잡는다. a₁, b₁의 값을 얻은 것과 같은 방법으로 두 점 F₂, G₂를 정하고 사각형 F₂G₂E₂D₂의 넓이를 a₂, 삼각형 B₂C₂G₂의 넓이를 b₂라 하자.
이와 같은 과정을 계속하여 n번째 얻은 사각형 F_nG_nE_nD_n의 넓이를 a_n, 삼각형 B_nC_nG_n의 넓이를 b_n이라 할 때,

$$\sum_{n=1}^{\infty} (a_n - b_n)$$
의 값은? [3점]

(1) 2 (2) $\frac{5}{2}$ (3) 3 (4) $\frac{7}{2}$ (5) 4

28. 양수 t와 곡선 y=te^{-x} 위를 움직이는 점 P에 대하여
원점과 점 P 사이의 거리가 최소일 때, 점 P의 x좌표를 f(t)라
하면 f(t)는 미분가능한 함수이다. f(α) = 2인 양수 α에 대하여

 $\int_{-\infty}^{\alpha} t^2 f'(t) dt \, \stackrel{\text{out}}{\to} \quad \stackrel{\text{out}}{\to} \stackrel{\text{out}}{\to}$

수학 영역(미적분)

단답형

29. 상수 p와 모든 항이 실수인 수열 $\{a_n\}$ 이 모든 자연수 n에 대하여 다음 조건을 만족시킨다.

 $(7) 0 < a_n < 6$

 $(\texttt{L}) \ a_{n+1} = a_n \times \bigl(a_n - 6\bigr) + p$

 $\sum_{k=1}^{\infty} \log_2 a_k = 3$ 일 때, $80 \times a_1$ 의 값을 구하시오. [4점]

30. 최고차항의 계수가 1이고 f(1) = 5인 삼차함수 f(x)에 대하여 함수

 $g(x) = \sin\left\{\pi f(x)\right\}$

는 x = 0에서 극댓값 0을 갖는다. |f(0) - f(-2)| = 4일 때, 모든 f(6)의 값의 합을 구하시오. [4점]

4

* 확인 사항

 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.

※시험이 시작되기 전까지 표지를 넘기지 마시오.