2024학년도 대비 COVEIN 공통 모의고사 수학 영역

| 성명 |
| :--- | :--- |

\bigcirc 문제지의 해당란에 성명과 수험 번호를 정확히 쓰시오.
\bigcirc 답안지의 필적 확인란에 다음의 문구를 정자로 기재하시오.

서서히 사라질바엔 한 번에 불타버릴래

○ 답안지의 해당란에 성명과 수험 번호를 쓰고, 또 수험 번호, 문형(홀수/짝수), 답을 정확히 표시하시오.

0 단답형 답의 숫자에 '0'이 포함되면 그 '0'도 답란에 반드시 표시하시오.
\bigcirc 문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고하시오. 배점은 2점, 3점 또는 4점입니다.
\bigcirc 계산은 문제지의 여백을 활용하시오.
※ 공통과목 및 자신이 선택한 과목의 문제지를 확인하고, 답을 정확히 표시하시오.

○ 공통과목

5지선다형

1. $2^{\sqrt{3}} \times 4^{\frac{-\sqrt{3}}{2}+1}$ [2점]
(1) $\frac{1}{4}$
(2) $\frac{1}{2}$
(3) 1
(4) 2
(5) 4
2. $\frac{3}{2} \pi<\theta<2 \pi$ 인 θ 에 대하여 $\tan \theta=-\frac{3}{2}$ 일 때, $\sin \theta+\cos \theta$ 의 값은? [3점]
(1) $-\frac{1}{\sqrt{13}}$ (2) 0
(3) $\frac{1}{\sqrt{13}}$
(4) $\frac{2}{\sqrt{13}}$
(5) $\frac{4}{\sqrt{13}}$
3. 함수 $f(x)$ 가
$\mathrm{f}^{\prime}(\mathrm{x})=3 x^{2}-4 x, \quad \mathrm{f}(1)=1$
을 만족시킬 때, $\mathrm{f}(2)$ 의 값은? [2점]
(1) -1
(2) 0
(3) 2
(4) 4
(5) 8
4. 등비수열 $\left\{a_{n}\right\}$ 에 대하여 $a_{1}=4, \frac{a_{5}}{a_{2}}=2$ 일 때, a_{7} 의 값은? [3점]
(1) 1
(2) 2
(3) 4
(4) 8
(5) 16
5. 함수 $f(x)=x^{3}-3 x^{2}+8$ 가 $\mathrm{x}=\mathrm{a}$ 에서 극소일 때, $\mathrm{a}+\mathrm{f}(\mathrm{a})$ 의 값은? [3점]
(1) 4
(2) 6
(3) 8
(4) 9
(5) 10
6. 함수 $y=\log _{\frac{1}{3}}(x-a)+b$ 가 닫힌구간 $[2,10]$ 에서 최댓값 4 , 최솟값 2 를 가질 때, $a+b$ 의 값을 구하시오. (단, $a<2$) [3점]
(1) 1
(2) 2
(3) 3
(4) 4
(5) 5
7. 방정식 $\log _{2}(x-4)+\frac{1}{\log _{x} 2}=5$ 을 만족시키는 실수 x 의 값은? [3점]
(1) 3
(2) 4
(3) 5
(4) 7
(5) 8
8. 함수 $f(x)= \begin{cases}x^{2}-3 x & (x<a) \\ 5 x+b & (x \geq a)\end{cases}$

가 실수 전체 집합에서 미분가능 할 때, $\mathrm{a}-\mathrm{b}$ 의 값은? (단, a, b 는 상수이다.) [3점]
(1) 16
(2) 20
(3) 22
(4) 25
(5) 26
10. 점 Q 를 꼭짓점으로 하는 이차함수 $\mathrm{f}(\mathrm{x})$ 위의 임의의 점 P 에 대해, 점 P 의 x 좌표와 Q 의 x 좌표의 차를 t 라하자. 이때, 선분 PQ 의 길이를 $\mathrm{x}(\mathrm{t})$ 라 할때, $x(t)=\sqrt{25 t^{4}+t^{2}}$ 이다. $t=3$ 일 때, $\mathrm{f}(\mathrm{x})$ 위의 점 P 에서의 접선의 기울기의 크기는? [4점]
(1) 20
(2) 25
(3) 30
(4) 35
(5) 40
9. 수열 $\left\{a_{n}\right\}$ 에대해 $a_{n}=\sum_{k=n}^{2 n-1}(k-n+1)(k-2 n+2)$ 을 만족한다. 이때, $\left|a_{12}\right|$ 의 값을 구하시오. [4점]
(1) 208
(2) 212
(3) 220
(4) 228
(5) 232
11. 이차함수 $\mathrm{f}(\mathrm{x})$ 와 일차함수 $\mathrm{g}(\mathrm{x})$ 에 대해 주어진 조건을 만족할 때, $|f(\alpha+3)|$ 의 값은? [4점]
(가) $|f(x)|, g(x)$ 가 세 개의 교점을 가지고 한점에서 접하고, 교점의 x 좌표는 각각 $\alpha, \alpha+6, \alpha+10$ 이다.
(나) $|f(x)|, g(x)$ 가 이루는 넓이의 값은 157 이다.
(1) 6
(2) 8
(3) 12
(4) 18
(5) 20
12. 두 함수 $f(x)=2^{x-1}+3 p, g(x)=-2^{-x+1}+3 p$ 가 있다. (단, p 는 0보다 큰 상수) 이때, 상수 k 에 대해서 직선 $x=k$ 가 두 함수 $y=f(x), y=g(x)$ 의 그래프와 만나는 점을 각각 P, Q 라 하고, 선분 PQ 의 길이가 최소일 때, 두 점 P, Q 의 위치를 각각 A, B 라 하자. 두점 A 와 B , 함수 $y=f(x)$ 위의 점 C . 함수 $y=g(x)$ 의 그래프 위의 점 D 가 다음 조건을 만족시킨다.
(가) 선분 AB 의 중점과 선분 CD 의 중점은 일치한다.
(나) 점 C 의 y 좌표는 점 D 의 y 좌표의 5 배이다.
(다) 직선 CD 의 기울기는 직선 AC 의 기울기의 2 배이다.
이때, 점 C 의 y 좌표 값은? [4점]
(1) 3
(2) 4
(3) 5
(4) 8
(5) 9
13. 다음 조건을 만족시키는 최고차항의 계수가 1 인 사차함수 $f(x)$ 에 대해 모든 $|f(2)|$ 들의 합은? [4점]
(가) $h(x)=f(|x-k|+k)-|f(x)|$ 를 만족하는 함수 $\mathrm{h}(\mathrm{x})$ 에 대해, 실수 전체 집합에서 미분가능하도록 하는 k 가 존재한다.
(나) $f(1)=f(5)=0$
(1) 3
(2) 8
(3) 12
(4) 27
(5) 30
14. 좌표평면 상에서 중심이 $(1,0)$ 이고, 반지름의 길이가 1 인 원과 $x=t$ 가 이루는 넓이 중 왼쪽 부분의 넓이를 $\mathrm{S}(\mathrm{t})$ 라 하자.
(단, $0<t<2$) $\mathrm{x}=\mathrm{t}$ 와 원이 만나는 두 교점사이의 거리를 $R(t)$ 라 할 때

아래에서 옳은 것만을 있는 대로 고른 것은?[4점]

$$
\begin{aligned}
& \text { ㄱ. } S^{\prime}(1)=R(1) \\
& \text { ․ } S^{\prime}(1)+S^{\prime}\left(\frac{3}{2}\right)=2+2 \sqrt{3} \\
& \text { ᄃ. }\left\{S^{\prime}(1)\right\}^{2}-\left\{\frac{S^{\prime}(1+\sin 2 \alpha)}{2}+1\right\}^{2}-\{\sin 2 \alpha\}^{2}=4 \sin ^{2} \alpha \\
& \left.0<\alpha<\frac{\pi}{4}\right)
\end{aligned}
$$

(단,
(1) ᄀ
(2) ᄂ
(3) ᄀ, ᄂ
(4) ᄀ, ᄃ
(5) ᄀ, ᄂ, ᄃ
15. 공차가 0 이 아닌 정수인 두 등차수열 a_{n}, b_{n} 이 존재하고, $A_{n}=\sum_{k=1}^{n} a_{k}, B_{n}=\sum_{k=1}^{n} b_{k}$ 라 할 때, 다음 조건을 만족한다.
(가) $A_{n}+B_{n}$ 은 공차가 13 인 등차수열이다.
(나) $5\left|a_{11}-b_{11}\right|=3\left|a_{15}-b_{15}\right|$
(다) A_{n} 의 최댓값이 존재하고, 그 최댓값을 M 라 할 때, $M=11 a_{6}$ 이다.

이때, b_{1} 의 값은? [4점]
(1) $-\frac{3}{2}$
(2) $\frac{1}{2}$
(3) $\frac{3}{2}$
(4) $\frac{5}{2}$
(5) $\frac{9}{2}$

단답 형

16. $\lim _{x} \frac{(x-3)\left(x^{2}+2 x+3\right)}{x^{2}-9}$ 의 값을 구하시오. [3점]
17. 미분가능한 함수 $\mathrm{f}(\mathrm{x})$ 에 대해 $f(1)=2, f^{\prime}(1)=3$ 이다. 이때, 함수 $g(x)=\left(2 x^{2}+1\right) f(x)$ 에 대하여 $g^{\prime}(1)$ 의 값을 구하시오. [3점]
18. 수열 a_{n} 에대해, $\sum_{n=1}^{5}\left\{a_{n}\right\}^{2}=30, \sum_{n=1}^{5} a_{n}=8$ 일 때,
$\sum_{n=1}^{5}\left\{a_{n}+8\right\}^{2}$ 의 값을 구하시오. [3점]
19. 원점을 출발하여 수직선 위를 움직이는 점 P 의 시각 t $(\mathrm{t} \geq 0)$ 에서의 속도는 $v(t)=a x^{2}+c$ (a, c 는 상수) 이다. 시각 $\mathrm{t}=0$ 에서 $\mathrm{t}=\mathrm{k}$ 까지 점 p 가 움직인 거리를 $s(k), \mathrm{t}=0$ 에서 $\mathrm{t}=\mathrm{x}$ 까지 점 p 의 위치 변화량을 $x(k)$ 라 할 때, 두 함수 $s(k), x(k)$ 가 다음 조건을 만족시킨다.
(가) $0 \leq k<2$ 이면 $s(k)-x(k)<16$ 이다.
(나) $k \geq 2$ 이면 $s(k)-x(k)=16$ 이다.
이때, $s(4)$ 의 값을 구하시오. [4점]
20. $-6<x<6$ 에서 함수 $y=6 \tan \frac{\pi x}{12}$ 의 그래프와 두 직선 $x=3$, $y=-6$ 으로 둘러쌓인 부분의 넓이를 구하시오. [3점]
21. $20^{a} \times 50^{b}$ 의 n 제곱근이 정수가 되도록 하는 자연수 a, b 에 대해 $a+b$ 의 최솟값을 $f(n)$ 라 하자. 이때 $\sum_{n=2}^{24} f(n)$ 의 값을 구하시오. (단, n 은 2 이상의 자연수) [4점]
22. 최고차항의 계수가 1 인 삼차함수 $\mathrm{f}(\mathrm{x})$ 가 다음 조건을 만족한다.
(가) $\mathrm{f}(\mathrm{x})$ 와 x 축이 오직 $\mathrm{x}=\frac{1}{2}$ 에서만 교점을 가진다.
(나) 실수 t 에대해 $\frac{f(t)}{t} \times \mathrm{x}=\mathrm{f}(\mathrm{x})$ 의 모든 실근의 곱을 $\mathrm{h}(\mathrm{t})$
라할 때, $\mathrm{h}(\mathrm{t})$ 는 오직 t 가 α_{1}, α_{2} 일 때 불연속이다.
(단, $\mathrm{t}>\frac{1}{2}$)
$\mathrm{f}^{\prime}(1)=\frac{3}{4}$ 일때 $\mathrm{f}(4)$ 의 값을 구하시오. [4점]

위 문제의 저작권은 오르비 닉네임 kurt covein에게 있습니다. 공모나 허락없이 과외자료 사용등 무단재배포를 금합니다.

+ 후기와 반응은 제작자에게 도움이 됩니다. 마음껏 평가 해주 세요.

