부정방정식 질문입니다.
문제)두 정수 a, b에 대하여 x에 대한 이차식 x^2+(3a+1)x+2a^2-b^2이 완전제곱식이 되도록 하는 a, b의 순서쌍 (a,b)의 개수는?
-시발점 수학(상)
저는 이 문제를 풀때, 완전제곱식이 되려면 '2a^2-b^2'이 일차항의 계수의 반의 제곱이 되어야 한다는 성질을 이용해서 풀었습니다.
현우진 선생님께서는 위의 이차식이 완전제곱식이라면 ( )^2 형태이므로 ( )^2=0이라고 치면, 중근을 가질거니까 '판별식=0' 이라고 두고 푸셨습니다.
현우진 선생님의 풀이가 이해가 조금 안되ㅅ qna로도 질문드려봤지만 돌아온 답변은 '가정일뿐이다'라는 것이였습니다.
제가 궁금한 점은, 어떻게 =0이라고 가정하고 풀 수 있는지 입니다.
혼자서 이걸 이해해보려고 함수로 생각해봤습니다. y=위의 이차식 꼴의 이차함수를 말이죠.
그리고, 이차함수의 함숫값이 0인 경우를 생각해보니까, 현우진 선생님 풀이대로 풀어도 문제가 없다고 느껴집니다만, 이차함수가 x축과 만나지 않을 때도 있기 때문에 헷갈립니다...
명확하게 설명해주실 분 계신가요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오다 센세는 원피스 완결을 어떤 식으로 낼까 역대급 용두사미가 될지도...
-
겁이난다… 50억 손해 입히고 “해줘“ 시전중…..
-
아플때 병원은 안가고 네이버 지식인 검색해서 원하는 답 나올때까지 돌아다니는거 그게...
-
생각보다 국수를 좀 못 보고 탐구를 잘 보신 분들이 많은 거 같음.. 1
저도 좀 그런 편이긴 한데 저랑 비슷한 성적대에서 특히 국수 3이나 4등급이신데...
-
용두용미 내놔
-
삼극사기 지금생각해보면 진짜 말도안되는 책이긴 하다 2
아는 사람은 아는 내용이었다지만 과장 좀 보태서 수능유형 하나를 죽여버림 저도 고2...
-
과외받아볼까
-
이라고 간판에 적힌 식당에서 환불을 요구해본 사람이 있을까
-
내 옆에는 다 메디컬노리는애만 있어서 메디컬 꿈꾸는 애가 많다고 생각해서 플랜 B에...
-
나히아 최애의 아이 주술 이 중에선 그나마 양반인듯 최애의 아이 저건;; 하차하길 잘했다.
-
근데 시발 아는사람이어서 더 충격이었음
-
최저는맞춤
-
진짜 생명 1
왜 찍맞하기 쉬웠던거냐 누군 하나빼고 다풀었는데 오히려 하나 틀려서 44고 누군...
-
ㅇㄱ ㅈㅉㅇㅇ?
-
고옥! 고옥!
-
예비고3, 내년 수능을 준비하시는 분들을 위해 준비해봤습니다. 24수능 미적...
-
16프로 가자!!!
-
그정도 아님 ㄹㅇ로
-
닥전
-
지향점도 없고..
-
어그로 죄송합니다. 26수능 응시하게된 재수생입니다.(지1은 고정) 2년전에...
-
하늬하늬 2
한의대
-
진짜 ㅈ빠지게 했는데도 해야함? 내신충임
-
이번 수능 8월부터 시작해서 화작96 미적81 영어3 물1 45 화1 38...
-
닭볶음탕 3
에 발작하는 사람이 있대요
-
통합변푠지 분리변푠지 그런 건 아직 발표 안 한 거죠? 과탐 가산점이나 미적, 기하...
-
아이브 레이는 모르겠다
-
문과입니다 대략 어느 정도 갈 수 있을까요 ㅠㅠ
-
국어 22독서 24문학 24선택 수학 20번 격자점 문제 (답:776) 21번...
-
그게 나야 바 둠바 두비두밥~ ^^
-
의대 쓰고 2
면접없는 의대면 1월에 걍 군대가도 괜춘?
-
다니게될수도 있는 학굔데 산책삼아 다녀올까용?
-
언매 인강 ㅊㅊ 2
메가 언매 인강 누구 들어야함??
-
고속에 뜨는 등급 정도가 실채 등급이랑 비슷한가요 보통? 아니면 더 내려가나요...
-
재수 예정인 고3입니다 학교에서 다음주부터 일주일 AI 특강, 미용특강 일주일...
-
노엘콘은 겨우 취소표로 구했다만 이번엔 존나 빡셀 듯 에휴...
-
올해가 역대급 저점 매수일게다
-
어디서 들었는데 부피 안곱하고도 할 수 있다는데 그런게있나요?
-
놀이터에서 음란행위는 18
왜하는거냐;; 안보일줄 알고 하는건가 다보이는데
-
국숭세단 중 한 곳 재학 중이었고, 6월에 공부 시작해서 가채점 기준으로...
-
82 92 1 50 45 인데 걸어놔서 세장다 스나로 쓸건데 어디 써야될까요..
-
투표해주세요유ㅠㅠㅠ
-
2027 수능은 헬파티 확정일듯 ㄹㅇ
-
작년기출 뽑아가는게 좋을까요 시험전에 읽게.. 풀기는 다 풀어봤는데
-
술한잔했습니다 3
오랜만에마시니까어질어질하네요
-
연대갈까 5
고3때는 연대가 로망이었는데 흠..
-
텔그 전적대 췤 4
아하!
-
크럭스 말대로면 미2 92는 표점 136 or 135임?? 3
진학사는 지금 138로 보고 있는데 수학 표점 1점 떨어지면 한양대식 8점 떨어져서...
-
과탐응 하
판별식을 쓰는 것은 방정식이라고 가정한 다음에 계산하는 거고요, 그래프를 이용해서 함수로 나타내는 것 역시 좌표평면상에서 y=0 (다른 말로 x축)과의 교점이 하나만 (실근은 2개, 서로 다른 실근은 1개(일명 중근)) 나오도록 만드는 겁니다. 둘 다 일종의 가정(if)입니다... 잘못 푼 것은 아니고요...
님이 접근한 이 식이 완전제곱식이 되려면 2차에서 1차항 계수의 절반의 제곱이 상수항의 제곱이 되는 형태로 푸는 것은 가정없이 가장 authentic하게 접근한 겁니다... 역시 이 풀이만 맞는 것도 아니고요...
수학은 관점에 따라서 자유롭게 변신할 수 있어야 합니다. 단, 그 변신이 논리적으로 잘못된 것이 없다는 전제 하에서요...
그런데 위의 이차식이 0이라는 값을 가질 수 없다면, 가정이 정당하지 않은 것 아닌가요?
가정이 정당하지 않은게 아니고요 완전제곱형태가 불가능하다는 결론이 나오겠죠... 실수체에서요...
방정식 꼴에서 완전제곱형태 말씀하시는 거죠?
( )^2=0 이 꼴이요.
예... 미지수가 포함된 방정식이라면 복소수체에서 따질 때에는 무조건 2차방정식의 근 2개는 존재하지만 실수체에서만 따지는 경우라면 있을수도 있고 없을수도 있습니다...
이렇게 가정해서 푸는걸 처음봐서 그런지... 익숙하지도 않고 별로 와닿지가 않네요ㅜ
아직도 이해가 안되요
수학 기법상 가장 광범위한게 행렬하고 방정식입니다... 식에서 성립하는 거면 방정식에서도 성립합니다. 방정식에서 성립한다고 식에서 성립하는 것은 아니고요... 이 말인즉슨 식에서 성립안하는 것처럼 보여도 방정식으로 놓고 보면 성립하는 경우도 존재합니다...
저 위에서 0을 가질 수 없을때는 완전제곱형태가 될 수 없다고 말씀하셨는데, 그렇다면 판별식=0을 활용할 수 없는 것이 아닌지요?
x^2 + 2ax + a^2-2a 이런 식이 있다고 하고 이게 완전제곱식이 되려면
1차항의 계수 절반의 제곱인 a^2 = a^2-2a이면 되겠죠... 그럼 a=0이 나오고 본식은 그냥 x^2이니까 성립합니다. 그런데 a가 0이 아니면 본식을 완전제곱식으로 만드는 a는 존재하지 않는거죠... 즉, 방정식으로 놓고 판별식을 쓰나 그냥 완전제곱꼴 변형을 하나 차이가 없다는 겁니다...
이제서야 생각이 났는데, 완전제곱식은 무조건 0이라는 값을 가지게 되있네요!
예를 들어 (x-a)^2이라는 식은 x=a일때 0을 가지듯이 말이에요.