수2 문제하나 질문할께요~
미분법 파트에서
함수 f(x) = x3-x2+5x+k = 5x2-4x+1-k 의 그래프가 서로 다른 두 점에서 만난다고 한다. 이때, 가능한 k의 값을 구하여라.
이게 문제인데요... 해설에선 y=F(x)의 그래프와 y=k 의 교점을 살피면 된다고 나왔어요~
근데 k를 이항하지 않고 풀 수 있는 방법은 수2 과정 내에서 없나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
혹시 뱃지가없는대학인데 학벌드립을치는건 아니겠지~??
-
(펑) 지금도 연락중 ㅇㅇ
-
오늘 운 무엇 3
덕코 복권 3번 눌렀는데 3등 나옴
-
날씨 신기하네 0
윗집에선 눈오고 아랫집에선 비오고 여기는 햇빛 쨍쨍이고
-
밐 2
-
알바 출격 4
-
맞팔하실분 4
구합니다
-
소백산맥에 북서풍이 가로막혔기 때문입니다 상식GOAT 한국지리
-
이게 접니다…허허 이렇게 다시 글을 쓰게 될줄은 몰랐네요
-
수업듣기 싫다 3
그래서 안 들음
-
국어 69수능교육청 전부 1이고 사관 현장응시 2틀인데... 평가원 국어가 다...
-
다른 건 다 성장이 늦었는데 왜 키만...이러냐고 남자는 군대에서도 자라는거 아님?...
-
진지하게 투표좀 0
제발
-
지방대 의대 아니면 설대 노리는 ㅂㅅ 고2인데 수2 좋아하면 미적 가는게 맞나?...
-
아닐거야 제발 아니어야돼….
-
나도눈볼래
-
전기장판으로 지지는 중인ㄷ 진짜 넘 아픔
-
눈 많이 오네 10
보기 너무 이쁘다..
-
햇빛쨍쨍이라고 ㅅㅂ
-
1,2월 알바, 토익 공부.시험 345월 학교 공부 6월 종강후 편입 공부...
-
하늘이 맑은데
-
진짜 가고싶다 2
연대 경제 가고싶다 아!
-
진학사가 주식도 아닌데 ㅈㄴ 쫄리네
-
수능 등급컷 1
메가보다 올라간다 vs 내려간다 vs 거의 비슷할 것 같다
-
비록 2년간 1센치도 안 됐지만... 이대로 멈추면 160초로 살겠지만... 키가...
-
1년 일찍 진학하면 14
엠티는 포기해야 되나요 미자라 혼숙이 될지....
-
대형 눈사람 9
와오
-
해주세요 사랑해요
-
크지 않네요 여러 군데 돌아봤는데 다 비슷비슷함 그냥 취향차이라는 건가...
-
몇점일까요
-
삼수때 한번 오르비에 광고뜨는 곳에서 받았는데 (오르비로 결제했었음) 갔더니 이상한...
-
사쿠라 치요 와 키타 이쿠요 는 유명한 인싸픽임 난 이만 운동하러 ㅂㅂ
-
우산 써도 눈이 안으로 들어오네
-
연대냐고대냐 8
연정외연로 vs 고정외고로 영어2에 수망이라 합격 확률은 비슷하게 나오네요
-
안녕하세요, 학교별 의대 면접 분석 칼럼 작성하고 있는 '의대합격 LTP'입니다....
-
합격예측 1
지금 표본 ㅈㄴ부족한 낙지는 암 의미 없지? 왤케 짜지 불안하겤ㅋㅋ
-
수능 채점 결과 D-8 16
모두가 해피한 등급 컷이 나오길
-
후
-
후
-
화작 1컷100 언매90 확 2등급블랭크 미85 기89 영어 7퍼 물 50 화...
-
중앙대 가능할까요? 수학때문에 어디 넣어야될 지 모르겠네요..
-
내취향 여캐일러 4
-
국어 과외하고싶은데 10
왜냐면 재수하면서 이원준 김젬마 전형태 김동욱 박광일쌤 수업 들어봤어서 약간 어떻게...
-
공부야 말로 진짜 아무나 하는게 아닌데
-
제발 메가대로만 7
더 내려가면 나 ㅈ된다
위첨자가 안써지네요...;
x옆에 있는 작은 수는 다 위첨자입니다~
x^3-x^2+5x+k = 5x^2 - 4x +1 -k
따라서
g(x) = x^3 - 6x^2 +9x -1 = -2k
라 두시고 g'(x)구하셔서 개형을 구하신후 교점이 두개일때 인 k값을 구해주시면 됩니다.
일반적으로 그래프가 만난다는 점은 대수적으로는 방정식의 해를 구하는 과정이며, 해석학적으로는 그래프의 교점을 의미합니다.
고교 과정에서 이차 방정식까지의 근은 직접 구하거나 판별식을 통해 근의 존재 범위를 추론하여 접근할수 있지만
삼차 이상의 다항 방정식에 대해서는 근을 직접 구하는경우는 매우 드물게 나타납니다. (가령 인수분해 되는정도...)
따라서 교점을 살피는것이 가장 적절한 풀이라 생각되구요.....
물론 k를 이항하지 않은상태에서 삼차와 이차함수의 교점이라 해석할수도 있지만
그렇게 되어버리면 삼차함수와 이차함수가 모두 k, -k만큼 평행이동 하기때문에 매우 복잡하게 구할수 밖에 없습니다.
일반적으로 수학문제를 풀 때에는 구하고자 하는대상을 한쪽으로 몰고 다른 대상을 반대쪽으로 몰아 등식으로 만든후
접근하는것이 보편적인 방법입니다.^^
아~
적절한 풀이가 있으니 굳이 돌아갈 필요가 없다는거군요~ ㅎㅎ
감사합니다~
돌아갈수는 있지만 비효율적이라는거죠.ㅎ
하지만 한번쯤은 A4에 펴놓고 해보시는것두 나쁘지 않을듯 합니다. ㅋ
두 함수가 동시에 움직이는걸 파악 할 정도면 저런 유형은 그냥 발로도 풀리겟죠 ㅋ